Thermal Transport Mechanism of Amorphous HfO2: A Molecular Dynamics Based Study

  • ZHANG Honggang ,
  • WEI Han ,
  • BAO Hua
展开
  • University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China

网络出版日期: 2023-12-01

基金资助


This work was supported by the National Natural Science Foundation of China (NSFC) (No. 12104291) and (No. 51676121). The computations are carried out on the π 2.0 cluster supported by the Center for High Performance Computing at Shanghai Jiao Tong University. The authors thank Dr. FAN Zheyong from Aalto University for useful discussions.

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Thermal Transport Mechanism of Amorphous HfO2: A Molecular Dynamics Based Study

  • ZHANG Honggang ,
  • WEI Han ,
  • BAO Hua
Expand
  • University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2023-12-01

Supported by


This work was supported by the National Natural Science Foundation of China (NSFC) (No. 12104291) and (No. 51676121). The computations are carried out on the π 2.0 cluster supported by the Center for High Performance Computing at Shanghai Jiao Tong University. The authors thank Dr. FAN Zheyong from Aalto University for useful discussions.

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

非晶二氧化铪(a-HfO2)由于其宽带隙和高介电常数等优异性能在半导体器件材料中被广泛关注。然而,a-HfO2热输运性质尚不明确,由此阻碍了它在电子领域的潜在应用。本工作使用基于分子动力学的方法系统地研究了a-HfO2的热输运性质。非平衡态分子动力学模拟表明,a-HfO2的热导率在100 nm以下具有明显的尺寸效应。热流谱分解分析方法表明了传播子和扩散子的热输运对系统长度的敏感性。通过格林-久保模式分析方法计算表明a-HfO2的热导率随温度的升高而升高。通过量化不同温度下各热载流子对热导率的贡献,我们发现在低温下(<100 K),传播子比扩散子对热输运的贡献显著,而在高温下,扩散子主导了热输运。

本文引用格式

ZHANG Honggang , WEI Han , BAO Hua . Thermal Transport Mechanism of Amorphous HfO2: A Molecular Dynamics Based Study[J]. 热科学学报, 2022 , 31(4) : 1052 -1060 . DOI: 10.1007/s11630-022-1626-5

Abstract

Amorphous hafnium dioxide (a-HfO2) has attracted increasing interest in the application of semiconductor devices due to its high dielectric constant. However, the thermal transport properties of a-HfO2 are not well understood, which hinders its potential application in electronics. In this work, we systematically investigate the thermal transport property of a-HfO2 using the molecular dynamics method. The non-equilibrium molecular dynamics simulations reveal that the thermal conductivity of a-HfO2 is length-dependent below 100 nm. Spectrally decomposed heat current further proves that the thermal transport of propagons and diffusons is sensitive to the system length. The thermal conductivity is found to increase with temperature using Green-Kubo mode analysis. We also quantify the contribution of each carrier to the thermal conductivity at different temperatures. We find that propagons are more important than diffusons in thermal transport at low temperatures (<100 K). In comparison, diffusons dominate heat transport at high temperatures. Locons have negligible contribution to the total thermal conductivity.

参考文献

[1] Matthews J.N., Semiconductor industry switches to hafnium-based transistors. Physics Today, 2008, 61: 25.
[2] Schlom D.G., Guha S., Datta S., Gate oxides beyond SiO2. MRS Bulletin, 2008, 33: 1017–1025. 
[3] Kang L., Lee B.H., Qi W.J., Jeon Y., Nieh R., Gopalan S., Onishi K., Lee J.C., Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE lectron Device Letters, 2000, 21: 181–183.
[4] Salaün A., Grampeix H., Buckley J., Mannequin C., Vallée C., Gonon P., Jeannot S., Gaumer C., Gros-Jean M., Jousseaume V., Investigation of HfO2 and ZrO2 for resistive random access memory applications. Thin Solid Films, 2012, 525, 20–27.
[5] Milo V., Zambelli C., Olivo P., Pérez E.K., Mahadevaiah M.G., Ossorio O., Wenger C., Ielmini D., Multilevel HfO2-based RRAM devices for low-power neuromorphic networks. APL Materials, 2019, 7: 081120.
[6] Mart C., Weinreich W., Czernohorsky M., Riedel S., Zybell S., Kuhnel K., CMOS compatible pyroelectric applications enabled by doped HfO2 films on deep-trench structures. 2018 48th European Solid-State Device Research Conference (ESSDERC), 2018, pp. 130–133.
[7] Park M.H., Lee Y.H., Kim H.J., Kim Y.J., Moon T., Kim K.D., Mueller J., Kersch A., Schroeder U., Mikolajick T., Hwang C.S., Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Advanced Materials, 2015, 27: 1811–1831.
[8] Wang T., Ekerdt J.G., Atomic layer deposition of lanthanum stabilized amorphous hafnium oxide thin films. Chemistry of Materials, 2009, 21: 3096–3101.
[9] Kim H., McIntyre P.C., Saraswat K.C., Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Applied Physics Letters, 2003, 82: 106–108.
[10] Xu Z., Houssa M., Carter R., Naili M., De Gendt S., Heyns M., Constant voltage stress induced degradation in HfO2/SiO2 gate dielectric stacks. Journal of Applied Physics, 2002, 91: 10127–10129.
[11] Jiang R., Xie E., Wang Z., Interfacial chemical structure of HfO2/Si film fabricated by sputtering. Applied Physics Letters, 2006, 89: 142907. 
[12] Renault O., Samour D., Rouchon D., Holliger P., Papon A.-M., Blin D., Marthon S., Interface properties of ultra-thin HfO2 films grown by atomic layer deposition on SiO2/Si. Thin Solid Films, 2003, 428: 190–194.
[13] Shen W., Kumari N., Gibson G., Jeon Y., Henze D., Silverthorn S., Bash C., Kumar S., Effect of annealing on structural changes and oxygen diffusion in amorphous HfO2 using classical molecular dynamics. Journal of Applied Physics, 2018, 123: 085113.
[14] Wang Y., Zahid F., Wang J., Guo H., Structure and dielectric properties of amorphous high-κ oxides: HfO2, ZrO2, and their alloys. Physical Review B, 2012, 85: 224110.
[15] Pop E., Goodson K.E., Thermal phenomena in nanoscale transistors. Journal of Electronic Packaging, 2006, 128: 102–108.
[16] Pop E., Sinha S., Goodson K.E., Heat generation and transport in nanometer-scaletransistors. Proceedings of the IEEE, 2006, 94: 1587–1601.
[17] Luo X., Demkov A.A., Structure, thermodynamics, and crystallization of amorphous hafnia. Journal of Applied Physics, 2015, 118: 124105.
[18] Lee S.M., Cahill D.G., Allen T.H., Thermal conductivity of sputtered oxide films. Physical Review B, 1995, 52: 253.
[19] Ramana C., Noor-A-Alam M., Gengler J.J., Jones J.G., Growth, structure, and thermal conductivity of yttria-stabilized hafnia thin films. ACS Applied Materials & Interfaces, 2012, 4: 200–204.
[20] Scott E.A., Gaskins J.T., King S.W., Hopkins P.E., Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon. APL Materials, 2018, 6: 058302.
[21] Song Y., Xu R., He J., Siontas S., Zaslavsky A., Paine D. C., Top-gated indium-zinc-oxide thin-film transistors with in situ Al2O3/HfO2 gate oxide. IEEE Electron Device Letters, 2014, 35: 1251–1253.
[22] Braun J.L., Baker C.H., Giri A., Elahi M., Artyushkova K., Beechem T.E., Norris P.M., Leseman Z.C., Gaskins J.T., Hopkins P.E., Size effects on the thermal conductivity of amorphous silicon thin films. Physical Review B, 2016, 93: 140201.
[23] Larkin J.M., McGaughey A.J., Thermal conductivity accumulation in amorphous silica and amorphous silicon. Physical Review B, 2014, 89: 144303.
[24] Lv W., Henry A., Non-negligible contributions to thermal conductivity from localized modes in amorphous silicon dioxide. Scientific Reports, 2016, 6: 1–8.
[25] Sultan R., Avery A., Underwood J., Mason S., Bassett D., Zink B., Heat transport by long mean free path vibrations in amorphous silicon nitride near room temperature. Physical Review B, 2013, 87: 214305. 
[26] Allen P.B., Feldman J.L., Thermal conductivity of disordered harmonic solids. Physical Review B, 1993, 48: 12581.
[27] Sääskilahti K., Oksanen J., Tulkki J., McGaughey A., Volz S., Vibrational mean free paths and thermal conductivity of amorphous silicon from non-equilibrium molecular dynamics simulations. AIP Advances, 2016, 6: 121904.
[28] Lv W., Henry A., Direct calculation of modal contributions to thermal conductivity via Green-Kubo modal analysis. New Journal of Physics, 2016, 18: 013028.
[29] Simoncelli M., Marzari N., Mauri F., Unified theory of thermal transport in crystals and glasses. Nature Physics, 2019, 15: 809–813.
[30] Isaeva L., Barbalinardo G., Donadio D., Baroni S., Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach. Nature Communications, 2019, 10: 1–6.
[31] Moon J., Latour B., Minnich A.J., Propagating elastic vibrations dominate thermal conduction in amorphous silicon. Physical Review B, 2018, 97: 024201.
[32] Zhou Y., Quantifying modal thermal conductivity in amorphous silicon. arXiv preprint arXiv: 2007.14031 2020.
[33] Allen P.B., Feldman J.L., Fabian J., Wooten F., Diffusons, locons and propagons: Character of atomie yibrations in amorphous Si. Philosophical Magazine B, 1999, 79: 1715–1731.
[34] Seyf H.R., Henry A., A method for distinguishing between propagons, diffusions, and locons. Journal of Applied Physics, 2016, 120: 025101. 
[35] Nose S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 1984, 81: 511. 
[36] Hoover W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31: 1695.
[37] Scopel W.L., da Silva A.J., Fazzio A., Amorphous HfO2 and Hf1-xSixO via a melt-and-quench scheme using ab initio molecular dynamics. Physical Review B, 2008, 77: 172101.
[38] Gallington L.C., Ghadar Y., Skinner L.B., Weber J.K., Ushakov S.V., Navrotsky A., Vazquez-Mayagoitia A., Neuefeind J.C., Stan M., Low J.J., Benmore C.J., The structure of liquid and amorphous hafnia. Materials, 2017, 10(11): 1290.
[39] Zhao H., Freund J., Lattice-dynamical calculation of phonon scattering at ideal Si-Ge interfaces. Journal of Applied Physics, 2005, 97: 024903. 
[40] Ni Y., Zhang H., Hu S., Wang H., Volz S., Xiong S., Interface diffusion-induced phonon localization in two-dimensional lateral heterostructures. International Journal of Heat and Mass Transfer, 2019, 144: 118608.
[41] Hu Y., Feng T., Gu X., Fan Z., Wang X., Lundstrom M., Shrestha S.S., Bao H., Unification of nonequilibrium molecular dynamics and the mode-resolved phonon Boltzmann equation for thermal transport simulations. Physical Review B, 2020, 101(15): 155308.
[42] Zhou Y., Hu M., Full quantification of frequency- dependent interfacial thermal conductance contributed by two-and three-phonon scattering processes from nonequilibrium molecular dynamics simulations. Physical Review B, 2017, 95: 115313.
[43] Seyf H.R., Gordiz K., DeAngelis F., Henry A., Using Green-Kubo modal analysis (GKMA) and interface conductance modal analysis (ICMA) to study phonon transport with molecular dynamics. Journal of Applied Physics, 2019, 125(8): 081101.
[44] Liao Y., Shiomi J., Akhiezer mechanism dominates relaxation of propagons in amorphous material at room temperature. Journal of Applied Physics, 2021, 130(3): 035101.
[45] Lukes J.R., Zhong H., Thermal conductivity of individual single-wall carbon nanotubes. Journal of Heat Transfer, 2007, 129(6): 705–716.
[46] Low J.J., Paulson N.H., D'Mello M., Marius S., Thermodynamics of monoclinic and tetragonal hafnium dioxide (HfO2) at ambient pressure. Calphad, 2021, 72: 102210.
文章导航

/