Influence of Participating Radiation on Measuring Thermal Conductivity of Translucent Thermal Insulation Materials with Hot Strip Method

  • ZHANG Hu ,
  • WU Kefan ,
  • TANG Guihua
展开
  • 1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    2. MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

网络出版日期: 2023-12-01

基金资助

This work was supported by the National Natural Science Foundation of China (No. 52130604, No. 51825604) and Innovative Talents Support Plan of China Postdoctoral Foundation (No. BX20180244).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Influence of Participating Radiation on Measuring Thermal Conductivity of Translucent Thermal Insulation Materials with Hot Strip Method

  • ZHANG Hu ,
  • WU Kefan ,
  • TANG Guihua
Expand
  • 1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    2. MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Online published: 2023-12-01

Supported by

This work was supported by the National Natural Science Foundation of China (No. 52130604, No. 51825604) and Innovative Talents Support Plan of China Postdoctoral Foundation (No. BX20180244).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2021

摘要

热带法作为一种典型的瞬态导热系数测量方法,被广泛用于测量不同温度下材料的隔热性能。由于热带法的测量理论基于纯导热介质假设,当测量半透明材料如二氧化硅气凝胶和光伏玻璃时其内部热辐射在高温下为主要传热模式,偏离了测量理论,影响测量结果的可靠性。本文采用数值模拟方法研究揭示了热带法测量半透明材料隔热性能的可靠性。通过数值模拟复现了热带法测量半透明材料导热系数时材料内部的导热-辐射耦合传热过程,获得了不同消光系数的半透明灰体材料不同温度下的等效导热系数。将热带法预测结果分别与一维稳态法、瞬态平面热源法和Rosseland模型得到的半透明材料等效导热系数进行对比,发现消光系数低的材料等效导热系数预测结果偏差较大,高温下热带法测量的导热系数高于稳态法测量结果。为实现半透明材料等效导热系数的准确测量,不同导热系数测量方法需考虑辐射传热效应。

本文引用格式

ZHANG Hu , WU Kefan , TANG Guihua . Influence of Participating Radiation on Measuring Thermal Conductivity of Translucent Thermal Insulation Materials with Hot Strip Method[J]. 热科学学报, 2022 , 31(4) : 1023 -1036 . DOI: 10.1007/s11630-021-1520-6

Abstract

The hot strip method, as one typical transient method, is widely used to measure the effective thermal conductivity of thermal insulation materials at various temperatures. Since the test theory is based on solving the energy equation via heat conduction, the test result will be questionable when measuring thermal insulation materials, such as silica aerogel and photovoltaic glazing, in which the participating thermal radiation is a dominant heat transfer mode at high temperature. In this study, numerical investigation is employed to reveal the measurement reliability of hot strip method when applied to translucent thermal insulation materials. By reproducing the dynamic conduction-radiation coupled heat transfer process within the translucent materials numerically, the effective thermal conductivity of translucent materials with varying extinction coefficients are obtained at various temperatures. Comparisons are made for the effective thermal conductivity of translucent materials determined by the hot strip method, one-dimensional steady state method, transient plane source method and Rosseland model. Large discrepancies are found among the effective thermal conductivity determined by different methods for translucent materials with low extinction coefficient. The thermal conductivity obtained from the hot strip method is overestimated at elevated temperature when compared with that from one-dimensional steady state method. In order to measure the effective thermal conductivity of translucent materials accurately, the effect of thermal radiation should be considered for different transient methods.

参考文献

[1] Hammerschmidt U., Hameury J., Strnad R., Turzó-Andras E., Wu J., Critical review of industrial techniques for thermal-conductivity measurements of thermal insulation materials. International Journal of Thermophysics, 2015, 36(7): 1530–1544.
[2] Cohen E., Glicksman L., Thermal properties of silica aerogel formula. ASME Journal of Heat Transfer, 2015, 137(8): 081601.
[3] Wei G.S., Liu Y.S., Zhang X.X., Yu F., Du X.Z., Thermal conductivities study on silica aerogel and its composite insulation materials. International Journal of Heat and Mass Transfer, 2011, 54(11–12): 2355–2366.
[4] Wei G.S., Wang L.X., Xu C., Du X.Z., Yang Y.P., Thermal conductivity investigations of granular and powdered silica aerogels at different temperatures and pressures. Energy and Buildings, 2016, 118: 226–231.
[5] Hopkins P.E., Kaehr B., Piekos E.S., Dunphy D., Brinker C.J., Minimum thermal conductivity considerations in aerogel thin films. Journal of Applied Physics, 2012, 111(11): 113532.
[6] Zheng X., Lin Q., Su G., Tang D., Liao Y., Chen Y., Thermal conductivity and thermal diffusivity of SiO2 nanopowder. Journal of Nanoparticle Research, 2011, 13(12): 6887–6893.
[7] Zhang H., Gu W., Li M.J., Fang W.Z., Li Z.Y., Tao W.Q., Influence of environmental factors on the adsorption capacity and thermal conductivity of silica nano-porous materials. Journal of Nanoscience and Nanotechnology, 2015, 15(4): 3048–3054.
[8] Zhang H., Fang W.Z., Wang X., Li Y.M., Tao W.Q., Thermal conductivity of fiber and opacifier loaded silica aerogel composite. International Journal of Heat and Mass Transfer, 2017, 115: 21–31.
[9] Zhang H., Fang W.Z., Li Z.Y., Tao W.Q., The influence of gaseous heat conduction to the effective thermal conductivity of nano-porous materials. International Communications in Heat and Mass Transfer, 2015, 68: 158–161.
[10] Ye C.S., An Z.M., Zhang R.B., Super-elastic carbon-bonded carbon fibre composites impregnated with carbon aerogel for high-temperature thermal insulation. Advances in Applied Ceramics, 2019, 118(5): 292–299.
[11] Qiu L., Ouyang Y., Feng Y., Zhang X., Note: Thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3ω method. Review of Scientific Instruments, 2018, 89: 096112.
[12] Qiu L., Du Y.B., Bai Y.Y., Feng Y.H., Zhang X.X., Wu J., Wang X.T., Xu C.H., Experimental characterization and model verification of thermal conductivity from mesoporous to macroporous SiOC ceramics. Journal of Thermal Science, 2021, 30(2): 465–476.
[13] Qiu L., Zou H.Y., Tang D.W., Wen D.S., Feng Y.H., Zhang X.X., Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Applied Thermal Engineering, 2018, 130: 1004–1011.
[14] Lee O.J., Lee K.H., Jin Yim T., Young Kim S., Yoo K.P., Determination of mesopore size of aerogels from thermal conductivity measurements. Journal of Non-Crystalline Solids, 2002, 298(2–3): 287–292.
[15] Lu X., Arduini-Schuster M., Kuhn J., Nilsson O., Fricke J., Pekala R., Thermal conductivity of monolithic organic aerogels. Science, 1992, 255(5047): 971–972.
[16] Coquard R., Baillis D., Quenard D., Experimental and theoretical study of the hot-wire method applied to low-density thermal insulators. International Journal of Heat and Mass Transfer, 2006, 49(23): 4511–4524.
[17] Coquard R., Baillis D., Quenard D., Experimental and theoretical study of the hot-ring method applied to low-density thermal insulators. International Journal of Thermal Sciences, 2008, 47(3): 324–338.
[18] Coquard R., Randrianalisoa J., Lallich S., Baillis D., Extension of the flash method to semitransparent polymer foams. ASME Journal of Heat Transfer, 2011, 133(11): 112604.
[19] Coquard R., Coment E., Flasquin G., Baillis D., Analysis of the hot-disk technique applied to low-density insulating materials. International Journal of Thermal Sciences, 2013, 65: 242–253.
[20] Gross U., Tran L.T.S., Radiation effects on transient hot-wire measurements in absorbing and emitting porous media. International Journal of Heat and Mass Transfer, 2004, 47(14): 3279–3290.
[21] Cohen E., Glicksman L., Analysis of the transient hot-wire method to measure thermal conductivity of silica aerogel: influence of wire length, and radiation properties. ASME Journal of Heat Transfer, 2014, 136: 041301.
[22] Yu F., Zhang X., Gao G., Thermal conductivity measurement of semitransparent solids by hot-wire technique. International Journal of Thermophysics, 2000, 21(2): 465–478.
[23] Zhang H., Li Y., Tao W.Q., Effect of radiative heat transfer on determining thermal conductivity of semi-transparent materials using transient plane source method. Applied Thermal Engineering, 2017, 114: 337–345.
[24] Zhang H., Ma Y.X., Wang X., Tang G.H., Numerical study of the influence of thermal radiation on measuring semi-transparent thermal insulation material with hot wire method. International Communications in Heat and Mass Transfer, 2021, 121: 105120. 
[25] Wang S., Ai Q., Zou T.Q., Sun C., Xie M., Analysis of radiation effect on thermal conductivity measurement of semi-transparent materials based on transient plane source method. Applied Thermal Engineering, 2020, 117: 115457.
[26] Zheng Q.Y., Kaur S., Dames C., Prasher R.S., Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials. International Journal of Heat and Mass Transfer, 2020, 151: 119331.
[27] Wei G.S., Liu Y.S., Zhang X.X., Du X.Z., Radiative heat transfer study on silica aerogel and its composite insulation materials. Journal of Non-Crystalline Solids, 2013, 362: 231–236.
[28] Jiménez-Saelices C., Seantier B., Cathala B., Grohens Y., Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydrate Polymers, 2017, 157: 105–113.
[29] Hammerschmidt U., Sabuga W., Transient hot strip (THS) method: Uncertainty assessment. International Journal of Thermophysics, 2000, 21(1): 217–248.
[30] Wei G.S., Du X.Z., Zhang X.X., Fan Y., Theoretical study on transient hot-strip method by numerical analysis. ASME Journal of Heat Transfer, 2010, 132(9): 091301.
[31] Hasanzadeh R., Azdast T., Doniavi A., Thermal conductivity of low-density polyethylene foams part II: Deep investigation using response surface methodology. Journal of Thermal Science, 2020, 29(1): 159–168.
[32] Zhang H., Jin Y., Gu W., Li Z.Y., Tao W.Q., A numerical study on the influence of insulating layer of the hot disk sensor on the thermal conductivity measuring accuracy. Progress in Computational Fluid Dynamics, 2013, 13(3–4): 191–201.
[33] Zhang H., Li M.J., Fang W.Z., Dan D., Li Z.Y., Tao W.Q., A numerical study on the theoretical accuracy of film thermal conductivity using transient plane source method. Applied Thermal Engineering, 2014, 72(1): 62–69.
[34] Modest M., Radiative Heat Transfer, third ed., Academic Press, Oxford, 2013.
文章导航

/