Toward an Optimum Design of an Amorphous Silicon Photovoltaic/Thermal System: Simulation and Experiments

展开
  • 1. College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
    2. Research Center for Sustainable Energy Technologies, Energy and Environment Institute, University of Hull, Hull, HU6 7RX, UK
    3. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China

网络出版日期: 2023-11-22

基金资助

The study was sponsored by China Postdoctoral Science Foundation (2022M713463), National Natural Science Foundation of China (52206292), and the EU Marie Curie International Incoming Fellowships Program (703746), and the Major Program of the Natural Science Foundation of Shandong Province (No. ZR2019ZD11).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Toward an Optimum Design of an Amorphous Silicon Photovoltaic/Thermal System: Simulation and Experiments

Expand
  • 1. College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
    2. Research Center for Sustainable Energy Technologies, Energy and Environment Institute, University of Hull, Hull, HU6 7RX, UK
    3. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China

Online published: 2023-11-22

Supported by

The study was sponsored by China Postdoctoral Science Foundation (2022M713463), National Natural Science Foundation of China (52206292), and the EU Marie Curie International Incoming Fellowships Program (703746), and the Major Program of the Natural Science Foundation of Shandong Province (No. ZR2019ZD11).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

摘要

太阳能光伏和光热综合利用(PV/T)技术作为推动实现“双碳”目标的重要途径可提供可再生热能和电能,在太阳能热电联供领域极具潜力。当前PV/T技术主要应用于低温场合,而随着人们对能源供给的需求越来越高,中温PV/T具有更广泛的应用前景,可驱动有机朗肯循环、吸收式制冷等过程,为建筑和工业等领域提供冷、热、电多种能源形式。目前,主流的PV/T系统大多采用晶硅电池作为光伏材料,但是晶硅电池具有很高的功率温度系数,其电效率会随着电池温度的升高而出现显著下降的现象。而且由于PV/T集热器内部铝板和晶硅电池之间的热膨胀系数相差很大,PV/T系统在长期运行中会产生较大的温度梯度和波动,这就导致光伏层容易出现断裂和破损的现象。作者发现上述由于PV/T系统使用晶硅电池所产生的问题可以通过使用非晶硅电池作为光伏材料来解决或者缓解。首先,非晶硅电池的功率温度系数明显低于晶硅电池,使其适合于中温工作而不会出现明显的电能损失。此外,非晶硅电池的薄膜特性使其与晶硅电池相比具有更低的热阻,而且可以避免较大的热应力,克服PV/T系统在温度波动较大时产生的破损和断裂的现象。最后,非晶硅电池的光致衰减效应被认为是限制非晶硅电池进一步推广应用的主要因素之一,然而这一观点局限于电池常温工作的情形,高于150°C的热退火可以减少非晶硅电池的缺陷状态,甚至可以使非晶硅电池的电性能恢复到原始状态。综上所述,非晶硅电池是一种有前景的太阳能电池,低的功率温度系数、热退火效应、薄膜特性以及可以避免大的热应力使得非晶硅电池是中温PV/T系统的理想选择。基于上述对非晶硅电池在PV/T系统中的应用优势,作者首次将以不锈钢为基板的非晶硅电池应用于太阳能PV/T系统中,而作为新开发的系统,有必要对其进行更加深入的研究以了解其各种参数对系统性能的影响,预期非晶硅PV/T系统的性能会受到很多热力学参数、结构参数和外部参数的影响,因此本文通过实验和理论分析对非晶硅PV/T系统开展了深入的研究。首先,建立了非稳态的分布参数模型,并通过实验数据验证了该数学模型的可靠性。通过理论研究分析了热力学参数(太阳辐照度、工作温度、质量流量)和结构参数(铜管根数、覆盖率)等对系统性能的影响,通过实验研究分析了边框阴影对非晶硅PV/T系统影响。此外,根据长期实验结果,首次整理出适用于非晶硅电池光致衰减过程的电效率函数,并且将该函数应用于全年模拟中。

本文引用格式

REN Xiao, LI Jing, LIU Weixin, ZHU Chuanyong, PEI Gang, GONG Liang . Toward an Optimum Design of an Amorphous Silicon Photovoltaic/Thermal System: Simulation and Experiments[J]. 热科学学报, 2023 , 32(3) : 947 -964 . DOI: 10.1007/s11630-023-1813-z

Abstract

Amorphous silicon photovoltaic/thermal (a-Si-PV/T) technology is promising due to the low power temperature coefficient, thin-film property, thermal annealing effect of the solar cells, and high conversion efficiency in summer. The design of a-Si-PV/T system is influenced by a number of thermodynamic, structural, and external parameters. Parametric analysis is useful for a good design of the system. A dynamic distributed parameter model is built and verified in this paper. Outdoor tests are carried out. The impacts of operating temperature, mass flow rate, cover ratio of solar cells, heat transfer area, and frame shadow ratio on its performance are theoretically and experimentally investigated. The results indicate that seven or eight copper tubes are suitable to achieve a high overall efficiency of the a-Si-PV/T system. The frame and tilt angle shall avoid a shadow ratio of more than 8.3% during operation. The difference between power outputs at operating temperatures of 35°C and 55°C in the first month is about 0.21% while it drops to less than 0.1% in the twelfth month. Compared with conventional PVT systems, the a-Si-PV/T system benefits from a higher design temperature with a minor efficiency decrement.

参考文献

[1] Ji J., Pei G., He W., et al., Research progress on solar photovoltaic/thermal systems utilization. Science Press, Beijing, 2017. (in Chinese)
[2] Pathak M.J.M., Pearce J.M., Harrison S.J., Effects on amorphous silicon photovoltaic performance from high-temperature annealing pulses in photovoltaic thermal hybrid devices. Solar Energy Materials and Solar Cells, 2012, 100: 199–203.
[3] Kutlu C., Li J., Su Y.H., et al., Investigation of an innovative PV/T-ORC system using amorphous silicon cells and evacuated flat plate solar collectors. Energy, 2020, 203: 117873.
[4] Platz R., Fischer D., Zufferey M.A., et al., Hybrid collectors using thin-film technology. IEEE Photovoltaic Specialists Conference 1997, pp. 1293–1296.
[5] Köntges M., Kunze I., Kajari-Schröder S., et al., The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Solar Energy Materials and Solar Cells, 2011, 95: 1131–1137.
[6] Jia R., Tao K., Li Q., et al., Influence of using amorphous silicon stack as front heterojunction structure on performance of interdigitated back contact-heterojunction solar cell (IBC-HJ). Front Energy, 2017, 11: 96–104.
[7] Mateo C., Hernández-Fenollosa M.A., Montero Á., et al., Ageing and seasonal effects on amorphous silicon photovoltaic modules in a Mediterranean climate. Renewable Energy, 2022, 186: 74–88.
[8] Virtuani A., Fanni L., Seasonal power fluctuations of amorphous silicon thin-film solar modules: distinguishing between different contributions. Progress in Photovoltaics: Research and Applications, 2014, 22: 208–217.
[9] Ruther R., Tamizh-Mani G., de Cueto J., et al., Performance test of amorphous silicon modules in different climates - Year three: Higher minimum operating temperatures lead to higher performance levels. Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference 2005, pp. 1635–1638.
[10] Huang M.X., Wang Y.F., Li M., et al., Comparative study on energy and exergy properties of solar photovoltaic/thermal air collector based on amorphous silicon cells. Applied Thermal Engineering, 2021, 185: 116376.
[11] Li J., Ren X., Yuan W.Q., et al., Experimental study on a novel photovoltaic thermal system using amorphous silicon cells deposited on stainless steel. Energy, 2018, 159: 786–798.
[12] Ren X., Li J., Hu M.K., et al., Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications. Applied Energy, 2019, 252: 113427.
[13] Amanlou Y., Hashjin T.T., Ghobadian B., et al., Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate. Applied Thermal Engineering, 2018, 141: 413–421.
[14] Hossain M.S., Pandey A.K., Selvaraj J., et al., Thermal performance analysis of parallel serpentine flow based photovoltaic/thermal (PV/T) system under composite climate of Malaysia. Applied Thermal Engineering, 2019, 153: 861–871.
[15] Li Z.M., Ji J., Yuan W.Q., et al., Experimental and numerical investigations on the performance of a G-PV/T system comparing with A-PV/T system. Energy, 2020; 194: 116776.
[16] Maadi S.R., Khatibi M., Ebrahimnia-Bajestan E., et al., Coupled thermal-optical numerical modeling of PV/T module - Combining CFD approach and two-band radiation DO model. Energy Conversion and Management, 2019, 198: 111781.
[17] Yu Q.W., Hu M.K., Li J.F., et al., Development of a 2D temperature-irradiance coupling model for performance characterizations of the flat-plate photovoltaic/thermal (PV/T) collector. Renewable Energy, 2020, 153: 404–419.
[18] Pathak M.J.M., Girotra K., Harrison S.J., et al., The effect of hybrid photovoltaic thermal device operating conditions on intrinsic layer thickness optimization of hydrogenated amorphous silicon solar cells. Solar Energy, 2012, 86: 2673–2677.
[19] Rozario J., Vora A.H., Debnath S.K., et al., The effects of dispatch strategy on electrical performance of amorphous silicon-based solar photovoltaic-thermal systems. Renewable Energy, 2014, 68: 459–465.
[20] Frigeri C., Serényi M., Szekrényes Z., et al., Effect of heat treatments on the properties of hydrogenated amorphous silicon for PV and PVT applications. Solar Energy, 2015, 119: 225–232.
[21] Xie M., Ren C.R., Fu L.M., et al., An industrial solution to light-induced degradation of crystalline silicon solar cells. Front Energy, 2017, 11: 67–71.
[22] Kichou S., Silvestre S., Nofuentes G., et al., Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure. Energy, 2016, 96: 231–41.
[23] Ishii T., Otani K., Takashima T., et al., Change in I-V characteristics of thin-film photovoltaic (PV) modules induced by light soaking and thermal annealing effects. Prog Photovoltaics, 2014, 22: 949–957.
[24] Li Z.M., Ji J., Yuan W.Q., et al., Experimental & numerical investigation and optimization on a novel flat-plate PV/T system using CdfTe thin-film solar modules of sandwich structure. Solar Energy, 2021, 223: 261–277.
[25] Bressan M., Gutierrez A., Garcia Gutierrez L., et al., Development of a real-time hot-spot prevention using an emulator of partially shaded PV systems. Renewable Energy, 2018, 127: 334–343.
[26] Wang Y.Y., Pei G., Zhang L.C., Effects of frame shadow on the PV character of a photovoltaic/thermal system. Applied Energy, 2014, 130: 326–332.
[27] Dolara A., Lazaroiu G.C., Leva S., et al., Experimental investigation of partial shading scenarios on PV (photovoltaic) modules. Energy, 2013, 55: 466–475.
[28] Wang Y.Y., Ke S.M., Liu F.S., et al., Performance of a building-integrated photovoltaic/thermal system under frame shadows. Energy and Buildings, 2017, 134: 71–79.
[29] Malathy S., Ramaprabha R., Comprehensive analysis on the role of array size and configuration on energy yield of photovoltaic systems under shaded conditions. Renewable and Sustainable Energy Reviews, 2015, 49: 672–679.
[30] Kesler S., Kivrak S., Gurleyen H., et al., A low cost shading analyzer and site evaluator design to determine solar power system installation area. International Journal of Photoenergy, 2015, 2015: 126373.
[31] Sattari S., Farhanieh B., A parametric study on radiant floor heating system performance. Renewable Energy, 2006, 31: 1617–1626.
[32] Shin M.S., Rhee K.N., Ryu S.R., et al., Design of radiant floor heating panel in view of floor surface temperatures. Build and Environment, 2015, 92: 559–577.
[33] https://www.energyplus.net/weather.
文章导航

/