A Strategy to Reduce the Peak Temperature of the Chip Working under Dynamic Power Using the Transient Cooling Effect of the Thin-Film Thermoelectric Cooler

WU Yongjia, CHEN Sen, GONG Tingrui, SHI Tianhao, ZUO Lei, YAN Yonggao, FANG Yueping, MING Tingzhen

热科学学报 ›› 2022, Vol. 31 ›› Issue (4) : 1094-1105.

PDF(2843 KB)
PDF(2843 KB)
热科学学报 ›› 2022, Vol. 31 ›› Issue (4) : 1094-1105. DOI: 10.1007/s11630-022-1637-2  CSTR: 32141.14.JTS-022-1637-2

A Strategy to Reduce the Peak Temperature of the Chip Working under Dynamic Power Using the Transient Cooling Effect of the Thin-Film Thermoelectric Cooler

作者信息 +

A Strategy to Reduce the Peak Temperature of the Chip Working under Dynamic Power Using the Transient Cooling Effect of the Thin-Film Thermoelectric Cooler

Author information +
文章历史 +

摘要

薄膜热电制冷器(TEC)是一种具有广阔应用前景的固态热泵,可利用帕尔贴效应对芯片局部超高热流进行散热。当向薄膜TEC施加电流脉冲时,TEC将产生比恒定电流条件更低的瞬态低温。在本文中,我们提出利用热电薄膜瞬态制冷效应降低在动态功率下芯片的峰值温度,提高半导体芯片工作的稳定性和可靠性。本文建立了三维数值模型研究了芯片上薄膜TEC的瞬态冷却性能,分析了不同电流脉冲、芯片热流密度、TEC热电偶长度、热电偶数量和接触电阻等参数对薄膜TEC性能的影响。结果表明,当在芯片峰值功率之前向薄膜TEC施加0.6A的电流脉冲时,芯片的峰值温度降低了10℃以上,使薄膜TEC成为现代高功率芯片温度控制的一种有效技术。

Abstract

The thin-film thermoelectric cooler (TEC) is a promising solid-state heat pump that can remove the high local heat flux of chips utilizing the Peltier effect. When an electric current pulse is applied to the thin-film TEC, the TEC can achieve an instantaneous lower temperature compared to that created by a steady current. In this paper, we developed a novel strategy to reduce the peak temperature of the chip working under dynamic power, thus making the semiconductor chip operate reliably and efficiently. A three-dimensional numerical model was built to study the transient cooling performance of the thin-film TEC on chips. The effects of parameters, such as the current pulse, the heat flux, the thermoelement length, the number of thermoelements, and the contact resistance on the performance of the thin-film TEC, were investigated. The results showed that when a current pulse of 0.6 A was applied to the thin-film TEC before the peak power of the chip, the peak temperature of the chip was reduced by more than 10°C, making the thin-film thermoelectric cooler a promising technology for the temperature control of modern chips with high peak powers.

关键词

temperature control / transient cooling / thermoelectric cooler / heat transfer

Key words

temperature control / transient cooling / thermoelectric cooler / heat transfer

引用本文

导出引用
WU Yongjia , CHEN Sen , GONG Tingrui , SHI Tianhao , ZUO Lei , YAN Yonggao , FANG Yueping , MING Tingzhen. A Strategy to Reduce the Peak Temperature of the Chip Working under Dynamic Power Using the Transient Cooling Effect of the Thin-Film Thermoelectric Cooler[J]. 热科学学报, 2022, 31(4): 1094-1105 https://doi.org/10.1007/s11630-022-1637-2
WU Yongjia , CHEN Sen , GONG Tingrui , SHI Tianhao , ZUO Lei , YAN Yonggao , FANG Yueping , MING Tingzhen. A Strategy to Reduce the Peak Temperature of the Chip Working under Dynamic Power Using the Transient Cooling Effect of the Thin-Film Thermoelectric Cooler[J]. Journal of Thermal Science, 2022, 31(4): 1094-1105 https://doi.org/10.1007/s11630-022-1637-2

参考文献

[1] Rowe D.M., CRC handbook of thermoelectrics. CRC press, 2018.
[2] Lu K., Thermoelectric energy conversion and materials, John Wiley & Sons, Inc, 2014.
[3] Shen L., Xiao F., Chen H., Wang S., Investigation of a novel thermoelectric radiant air-conditioning system. Energy and Buildings, 2013, 59: 123–132.
[4] Gong T., Gao L., Wu Y., Zhang L., Yin S., Li J., Ming T., Numerical simulation on a compact thermoelectric cooler for the optimized design. Applied Thermal Engineering, 2019, 146: 815–825.
[5] Semenyuk V., Thermoelectric micro modules for spot cooling of high density heat sources. Proceedings ICT2001 20 International Conference on Thermoelectrics (Cat. No. 01TH8589), IEEE, 2001.
[6] Dresselhaus M., Chen G., Ren Z., McEnaney K., Dresselhaus G., Fleurial J.P., The promise of nanocomposite thermoelectric materials. MRS Online Proceedings Library (OPL), 2009, pp. 1166.
[7] Poudel B., Hao Q., Ma Y., Lan Y., Minnich A., Yu B., Ren Z., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638.
[8] Harman T.C., Walsh M.P., Laforge B.E., Turner G.W., Nanostructured thermoelectric materials. Journal of Electronic Materials, 2005, 34(5): 19–22.
[9] Hicks L.D., Dresselhaus M.S., The effect of quantum well structures on the thermoelectric figure of nerit. MRS Online Proceedings Library (OPL), 1992, pp. 281.
[10] Alam H., Ramakrishna S., A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy, 2013, 2(2): 190–212.
[11] Bell L.E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461.
[12] Enescu D., Virjoghe E.O., A review on thermoelectric cooling parameters and performance. Renewable and Sustainable Energy Reviews, 2014, 38: 903–916. 
[13] Mahajan R., Chiu C.P., Chrysler G., Cooling a Microprocessor Chip. Proceedings of the IEEE, 2006, 94(8): 1476–1486.
[14] Rowe D.M., Thermoelectrics handbook: Macro to nano. CRC press, 2018.
[15] Chowdhury I., Prasher R., Lofgreen K., Chrysler G., Narasimhan S., Mahajan R., On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235–238.
[16] Wang B.L., Cui Y.J., Transient interlaminar thermal stress in multi-layered thermoelectric materials. Applied Thermal Engineering, 2017, 119: 207–214.
[17] Choday S.H., Lundstrom M.S., Roy K., Prospects of thin-film thermoelectric devices for hot-spot cooling and on-chip energy harvesting. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(12): 2059–2067. 
[18] Riffat S.B., Ma X., Improving the coefficient of performance of thermoelectric cooling systems: a review. International Journal of Energy Research, 2004, 28(9): 753–768.
[19] Snyder G.J., Toberer E.S., Complex thermoelectric materials. Materials for sustainable energy: a Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 2011, pp. 101–110.
[20] Nolas G.S., Poon J., Kanatzidis M., Recent developments in bulk thermoelectric materials. MRS bulletin, 2006, 31(3): 199–205. 
[21] Li S., Toprak M.S., Soliman H.M., Zhou J., Muhammed M., Platzek D., Müller E., Fabrication of nanostructured thermoelectric bismuth telluride thick films by electrochemical deposition. Chemistry of Materials, 2006, 18(16): 3627–3633. 
[22] Harman T.C., Taylor P.J., Walsh M.P., LaForge B.E., Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229–2232.
[23] Wu Y., Sun K., Yu S., Zuo L., Modeling the selective laser melting-based additive manufacturing of thermoelectric powders. Additive Manufacturing, 2021, 37: 101666.
[24] Longtin J.P., Zuo L., Hwang D., Fu G., Tewolde M., Chen Y., Sampath S., Fabrication of thermoelectric devices using thermal spray: application to vehicle exhaust systems. Journal of Thermal Spray Technology, 2013, 22(5): 577–587. 
[25] Semenyuk V., Cascade thermoelectric micro modules for spot cooling high power electronic components. IEEE, 2002, pp. 531–534. 
[26] Chen G., Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford university press, 2005.
[27] Yang R., Chen G., Kumar A.R., Snyder G.J., Fleurial J.P., Transient cooling of thermoelectric coolers and its applications for microdevices. Energy Conversion and Management, 2005, 46(9–10): 1407–1421.
[28] Sullivan O., Gupta M.P., Mukhopadhyay S., Kumar S., Thermoelectric coolers for thermal gradient management on chip ASME. International Mechanical Engineering Congress and Exposition, 2010, 44281: 187–195.
[29] Snyder G.J., Fleurial J.P., Caillat T., Yang R., Chen G., Supercooling of Peltier cooler using a current pulse. Journal of Applied Physics, 2002, 92(3): 1564–1569.
[30] Zhu W., Deng Y., Wang Y., Wang A., Finite element analysis of miniature thermoelectric coolers with high cooling performance and short response time. Microelectronics Journal, 2013, 44(9): 860–868.
[31] Shen L.M., Xiao F., Chen H.X., Wang S.W., Numerical and experimental analysis of transient supercooling effect of voltage pulse on thermoelectric element. International Journal of Refrigeration, 2012, 35(4): 1156–1165.
[32] Lv H., Wang X.D., Wang T.H., Meng J.H., Optimal pulse current shape for transient supercooling of thermoelectric cooler. Energy, 2015, 83: 788–796.
[33] Palko J.W., Zhang C., Wilbur J.D., Dusseault T.J., Asheghi M., Goodson K.E., Santiago J.G., Approaching the limits of two-phase boiling heat transfer: High heat flux and low superheat. Applied Physics Letters, 2015, 107(25): 253903.
[34] Sullivan O., Array of thermoelectric coolers for on-chip thermal management. Journal of Electronic Packaging, 2012, 134: 021005.
[35] Li G., Garcia F.J., Lara R.D.A., Barati V., Perez N., Soldatov I., Nielsch K., Integrated microthermoelectric coolers with rapid response time and high device reliability. Nature Electronics, 2018, 1(10): 555–561. 
[36] Yang R., Chen G., Snyder G.J., Fleuriel J.P., Geometric effects on the transient cooling of thermoelectric coolers. MRS Online Proceedings Library, 2001, 691(1): 1–6.
[37] Lv H., Wang X.D., Wang T.H., Cheng C.H., Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section. Applied Energy, 2016, 164: 501–508.
[38] Manikandan S., Kaushik S.C., Transient thermal behavior of annular thermoelectric cooling system. Journal of Electronic Materials, 2017, 46(5): 2560–2569.
[39] Wu Y., Ming T., Li X., Pan T., Peng K., Luo X., Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator. Energy Conversion and Management, 2014, 88: 915–927. 
[40] Yin S., Tseng K.J., Zhao J., Thermal-mechanical design of sandwich SiC power module with micro-channel cooling. IEEE, 2013: 535–540.
[41] Dhannoon M., Analytical study of miniature thermoelectric device, 2016.
[42] Gong T., Gao L., Wu Y., Tan H., Qin F., Ming T., Li J., Transient thermal stress analysis of a thermoelectric cooler under pulsed thermal loading. Applied Thermal Engineering, 2019, 162: 114240.
[43] Shen L., Xiao F., Chen H., Wang S., Investigation of a novel thermoelectric radiant air-conditioning system. Energy and Buildings, 2013, 59: 123–132.
[44] Olesen B.W., Zöllner G., New European standards for design, dimensioning and testing embedded radiant heating and cooling systems. Proceedings of CLIMA, 2007.
[45] Mitrani D., Salazar J., Turó A., Garcia M.J., Chavez J.A., Transient distributed parameter electrical analogous model of TE devices. Microelectronics Journal, 2009, 40(9): 1406–1410.
[46] Liu D., Zhao F.Y., Wang H.Q., Rank E., Turbulent transport of airborne pollutants in a residential room with a novel air conditioning unit. International Journal of Refrigeration, 2012, 35(5): 1455–1472. 
[47] Jiang C., Fan X.A., Rong Z., Zhang C., Li G., Feng B., Xiang Q., Elemental diffusion and service performance of Bi2Te3-based thermoelectric generation modules with flexible connection electrodes. Journal of Electronic Materials, 2017, 46(2): 1363–1370.
[48] Cao L., Deng Y., Gao H., Wang Y., Chen X., Zhu Z., Towards high refrigeration capability: the controllable structure of hierarchical Bi0.5Sb1.5Te3 flakes on a metal electrode. Physical Chemistry Chemical Physics, 2015, 17(10): 6809–6818.
[49] Kong X., Zhu W., Cao L., Peng Y., Shen S., Deng Y., Controllable electrical contact resistance between Cu and Oriented-Bi2Te3 film via interface tuning. ACS applied materials & interfaces, 2017, 9(30): 25606–25614.
[50] Silva L., Kaviany M., Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport. International Journal of Heat & Mass Transfer, 2004, 47(10/11): 2417–2435.
[51] Xu G., Duan Y., Chen X., Ming T., Huang X., Influence of interface contact effects on performance of different scale thermoelectric coolers. Applied Thermal Engineering, 2020, 169: 114933.

基金

This research was supported by the National Natural Science Foundation of China (Grant No. 51778511), Natural Science Foundation of Hubei Province (Grant No. 2018CFA029), Key Research and Design Projects of Hubei Province (Grant No. 2020BAB129), Key Project of ESI Discipline Development of Wuhan University of Technology (Grant No. 2017001), and Scientific Research Foundation of Wuhan University of Technology (Nos. 40120237 and 40120551), and the Fundamental Research Funds for the Central Universities (WUT: 2021IVA037). The support to Dr. FANG Yueping from EU Horizon 2020 Marie Curie Global Fellowship (Grant No. 841183) was appreciated.

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
PDF(2843 KB)

文章所在专题

微纳米尺度传热

85

Accesses

0

Citation

Detail

段落导航
相关文章

/