SINGH Shailendra, ANAND Abhishek, SHUKLA Amritanshu, SHARMA Atul
This study evaluates the effectiveness of phase change materials (PCMs) inside a storage tank of warm water for solar water heating (SWH) system through the theoretical simulation based on the experimental model of S. Canbazoglu et al. The model is explained by five fundamental equations for the calculation of various parameters like the effectiveness of PCMs, the mass of hot water, total heat content, and duration of charging. This study simulated eleven PCMs to analyze their effectiveness like Sodium hydrogen phosphate dodecahydrate (SHPD), OM 37, N-Eicosane (NE), Lauric acid (LA), Paraffin wax (PW), OM 48, Paraffin wax C20-33 (PW-C20-33), Sodium acetate trihydrate (SAT), Palmitic acid (PA), Myristic acid (MA), and Stearic acid (SA). Among all PCMs, the SHPD has found the highest value of effectiveness factor of 3.27. So, it is the most recommended PCM for the storage tank of the SWH system. The study also includes the melt fraction analysis of all enumerated PCMs corresponding to container materials of stainless steel, glass, aluminum mixed, tin, aluminum, and copper. This melt fraction analysis is performed by making a coding program in the FORTRAN programming language. Through the analysis, copper container material is found to have high melting rate for all PCMs so it is superior to other container materials.