“储能” 栏目所有文章列表

(按年度、期号倒序)

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部

Please wait a minute...
  • 全选
    |
  • 储能
    JI Zengcai, SONG Guoliang, TANG Zihua, SUN Liwei
    热科学学报. 2024, 33(4): 1554-1563. https://doi.org/10.1007/s11630-024-1902-7
    固体颗粒储热技术具有时空调节的特性,能够有效解决因可再生能源大比例接入电网造成的时间、空间和能量强度上的热能供给与需求不匹配而引起的问题,从而最大程度地确保电力系统的安全稳定运行。为了研究循环流化床储放热系统中固体颗粒的输运调节特性,设计搭建了0.1 MWth实验平台,系统的研究了以双U阀为进料控制阀,U型阀为返料控制阀的固体颗粒输运结构在不同配风方式下的输运调节特性。结果表明,该输运结构能够有效完成循环流化床内储热固体颗粒的高效快速储放,双U阀的松动风和两侧返料风共同影响储灰仓进料速率,在控制进料速率时,应采取松动风粗调,两侧返料风细调的调控策略。U型阀的松动风和返料风共同影响储灰仓的返料速率,在控制返料速率时,应采取U型阀的松动风粗调,返料风细调的调控策略。
  • 储能
    HU Shiwei, XU Weiqing, JIA Guanwei, CAI Maolin, LI Jidong, LU Yueke, REN Teng
    热科学学报. 2023, 32(1): 17-29. https://doi.org/10.1007/s11630-022-1715-5
    压缩空气储能技术是可再生能源发展的重要技术。该技术的主要优势是储能容量大和环境友好。主要的挑战之一是储能密度低,需要天然的洞穴来储存空气。提高压缩空气储能的压力能够有效的提高储能密度。由于液体活塞式空气压缩机易于实现高压压缩,并且高效的换热能够大幅度降低气体压缩过程中的能耗,本文提出了一种通过使用多管束并联的压缩腔来增加表面积和换热量的近等温压缩方法,利用液体驱动空气压缩得到高压气体。在保持压缩腔横截面积不变的前提下,减小管道直径,增加并联管道的数量,实现压缩比为6.25:1的空气压缩,得到5MPa的高压气体。分析了不同管数条件下系统的性能。当使用1000根管、压缩和膨胀时间一分钟时,系统的压缩效率和膨胀效率可以分别达到93.0%和92.9%。本文提供了一种高效的高压压缩空气储能新方法。
  • 储能
    TOLA Vittorio, MARCELLO Francesca Carolina, COCCO Daniele, CAU Giorgio
    热科学学报. 2022, 31(5): 1279-1292. https://doi.org/10.1007/s11630-022-1632-7
    The widespread diffusion of renewable energy sources calls for the development of high-capacity energy storage systems as the A-CAES (Adiabatic Compressed Air Energy Storage) systems. In this framework, low temperature (100°C–200°C) A-CAES (LT-ACAES) systems can assume a key role, avoiding some critical issues connected to the operation of high temperature ones.
    In this paper, two different LT-ACAES configurations are proposed. The two configurations are characterized by the same turbomachines and compressed air storage section, while differ in the TES section and its integration with the turbomachinery. In particular, the first configuration includes two separated cycles: the working fluid (air) cycle and the heat transfer fluid (HTF) cycle. Several heat exchangers connect the two cycles allowing to recover thermal energy from the compressors and to heat the compressed air at the turbine inlet. Two different HTFs were considered: air (case A) and thermal oil (case B). The second configuration is composed of only one cycle, where the operating fluid and the HTF are the same (air) and the TES section is composed of three different packed-bed thermal storage tanks (case C). The tanks directly recover the heat from the compressors and heat the air at each turbine inlet, avoiding the use of heat exchangers.
    The LT-ACAES systems were modelled and simulated using the ASPEN-Plus and the MATLAB-Simulink environments. The main aim of this study was the detailed analysis of the reciprocal influence between the turbomachinery and the TES system; furthermore, the performance evaluation of each plant was carried out assuming both on-design and off-design operating conditions. Finally, the different configurations were compared through the main performance parameters, such as the round-trip efficiency.
    A total power output of around 10 MW was set, leading to a TES tank volume ranging between 500 and 700 m3. The second configuration with three TES systems appears to be the most promising in terms of round-trip efficiency since the energy produced during the discharging phase is greater. In particular, the round-trip efficiency of the LT-ACAES ranges between 0.566 (case A) to 0.674 (case C). Although the second configuration assures the highest performance, the effect of operating at very high pressures inside the tanks should be carefully evaluated in terms of overall costs.
  • 储能
    WANICZEK Sebastian, OCHMANN Jakub, BARTELA Łukasz, RULIK Sebastian, LUTYŃSKI Marcin, BRZUSZKIEWICZ Michał, KOŁODZIEJ Konrad, SMOLNIK Grzegorz, JURCZYK Michał, LIPKA Marian
    热科学学报. 2022, 31(5): 1302-1317. https://doi.org/10.1007/s11630-022-1593-x
    Compressed Air Energy Storage (CAES) is one of the methods that can solve the problems with intermittency and unpredictability of renewable energy sources. A side effect of air compression is a fact that a large amount of heat is generated which is usually wasted. In the development of CAES systems, the main challenge, apart from finding suitable places for storing compressed air, is to store this heat of compression process so that it can be used for heating the air directed to the expander at the discharging stage. The paper presents the concept of a hybrid compressed air and thermal energy storage (HCATES) system, which may be a beneficial solution in the context of the two mentioned challenges. Our novel concept assumes placing the thermal energy storage (TES) system based on the use of solid storage material in the volume of the post-mining shaft forms a sealed air pressure reservoir. Implementation of proposed systems within heavily industrialized agglomerations is a potential pathway for the revitalization of post-mine areas. The potential of energy capacity of such systems for the Upper Silesian region could exceed the value of 10 GWh. In the paper, the main construction challenges related to this concept are shown. The issues related to the possibility of storing air under high pressure in the shaft from the view of the rock mass strength are discussed. The overall concept of the TES system installation solution in the shaft barrel is presented. The basic problems related to heat storage in the cylindrical TES system with a non-standard structure of high slenderness are also discussed. The numerical calculations were based on the results of experiments performed on a laboratory stand, the geometry of which is to reflect the construction of a TES tank in a post-mining shaft. The article presents the results of numerical analysis showing the basic aspects related to difficulties that may occur at the construction stage and during the operation of the proposed HCATES system. The paper focuses on the methodology for determining the energy and exergy efficiency of a section of a Thermal Energy Storage tank, and presents the differences in the performance of this tank depending on its geometric dimensions, which are determined by the different sizes of mine shafts.
  • 储能
    LAN Yingying, HUANG Congliang, GUO Chuwen
    热科学学报. 2022, 31(5): 1327-1336. https://doi.org/10.1007/s11630-022-1618-5
    为了提高太阳能蓄热系统的蓄热效率以及降低制造成本,迫切需要开发更先进的高温蓄热系统。 本文研究了以铜为基体和锡为相变材料(PCM)的两种典型相变体系,即锡颗粒嵌入铜基体形成的三维结构体系和锡线嵌入铜基体形成的二维结构体系。 由于纳米材料的热物性与宏观材料相比有很大的差异,因此,我们首先从理论上分析了PCM和基体的热物性,如通过动力学方法获得热导率以及基于林德曼判据推导比热容。 然后,利用这些特性分别对三维和二维结构系统的蓄热性能进行估算,并从理论上研究了三维和二维结构系统中结构对传热效率的影响。 结果表明,与二维结构体系相比,三维结构体系具有更大的比表面积、更大的比热容和更大的导热系数,是一种更好的选择。 当特征尺寸减小到锡的临界值(约500纳米)以下时,系统的导热系数呈指数衰减,而比热容呈线性增加。 此外,当锡的几何特征尺寸小于临界值(三维结构体系为15纳米, 二维结构体系为25纳米)时,铜基体无法起到提高整个体系有效热导率的作用。
  • 储能
    LIN Zhihua, ZUO Zhitao, LIANG Qi, HOU Hucan, GUO Wenbin, CHEN Haisheng
    热科学学报. 2022, 31(2): 273-284. https://doi.org/10.1007/s11630-022-1527-7
    可调扩压器(AVDs)作为一种调节技术,可以扩宽压缩空气储能系统(CAES)的工作流量范围,并提高其气动性能。为了研究可调扩压器的调节机理和捕捉详细的叶片载荷分布以便设计优化,设计并制造了用于离心压缩机闭式试验台测试的增材制造可调扩压器。首先,通过数值分析和试验支撑总结可调扩压器调节规律,提取相应的叶片载荷数据以分析分布规律;然后,根据分布特性,设计了适合可调组件的3D可调扩压器模型;再者,依据实际试验运行环境选择了选择性激光熔融技术和模具钢材料1.2709进行金属打印;最后,对待测试的成品件进行了性能测试和精度检测,几乎所有的入口孔偏差都在0.3mm的允许误差内。研究结果表明:增材制造技术能有效提高扩压器内流通道的可塑性,并能详尽的导出压力面和吸力面的叶片载荷,同时能在不同运行条件下提供可调功能。它不仅可以突破传统可调扩压器复杂内流通道的加工瓶颈,而且提高与可调组件的设计匹配程度,同时确保了高性能高精度、有效缩短了加工时间。
  • 储能
    热科学学报. 2021, 30(6): 1861-1874.
    中文导读:本文在传统热经济学概念的基础上,对容量型和功率型储能进行了热经济性建模和评估,同时考虑了政策、环境、社会等综合因素的影响,首次提出了㶲经济收益率综合评估指标。利用该模型和指标,本文对抽水蓄能、压缩空气储能、飞轮储能三个典型物理储能进行了热经济性评估,结果表明:抽水蓄能调峰、压缩空气储能调峰和飞轮储能调频三种应用情景中,㶲经济收益率均大于零,说明热经济均可行;当考虑政策、环境、社会等效益后,㶲成本降低25%,㶲经济收益率约增加一倍。同时,通过对容量型和功率型储能的敏感性分析表明,储能系统效率均是容量型和功率型储能热经济性影响的首要因素,但对于采用价差套利的容量型储能,峰谷电价差为第二大影响因素,对于采用调节里程收益模式的功率型储能,里程比率为第二大影响因素。总体来看,在三个典型案例中,抽水蓄能的热经济性最好,压缩空气储能次之,飞轮储能最差,主要原因是抽水蓄能的非能量成本最低,而飞轮储能的非能量成本最高。本文研究为储能技术的评估提供了新方法,研究结果为储能技术路线和商业模式的选择提供了参考。
  • 储能
    热科学学报. 2021, 30(5): 1559-1571.
    树叶的等级孔结构作为一种高效的自然选择养分运输系统,在物质运输和能量传递方面具有独特的优势。仿生叶层状多孔结构在太阳能热化学反应、光催化、储能等方面有着广泛的应用。为了提高系统热效率,降低运行能耗,本文介绍了一种具有仿树叶等级孔结构的潜热蓄热堆积床系统。在孔隙率相同的情况下,潜热储热单元的直径设计为沿流动方向变化以优化其热性能。对比分析了速度对传统单尺寸模型和仿树叶等级孔模型在温度分布、压降、融化速率和蓄热能力的差异。结果表明,与传统的单尺寸模型相比,仿树叶等级孔结构可以使堆积床的温跃层厚度变薄,压降减小,换热面积增大,热响应提高。在本文模拟中,系统的压降降低25pa、融化速率和完成率的最大增幅分别为36.6%和20.3%。上熔点温跃层的厚度最大降幅为51.7%。这些结果为在实际条件下优化潜热蓄热堆积床系统和改善其热性能提供了建议。
  • 储能
    LI Shuwei; WANG Hongqiang; FANG Juan
    热科学学报. 2020, 29(2): 280-297. https://doi.org/10.1007/s11630-020-1245-y