Efficiency Analysis of an Arrayed Liquid Piston Isothermal Air Compression System for Compressed Air Energy Storage

HU Shiwei, XU Weiqing, JIA Guanwei, CAI Maolin, LI Jidong, LU Yueke, REN Teng

热科学学报 ›› 2023, Vol. 32 ›› Issue (1) : 17-29.

PDF(1512 KB)
PDF(1512 KB)
热科学学报 ›› 2023, Vol. 32 ›› Issue (1) : 17-29. DOI: 10.1007/s11630-022-1715-5  CSTR: 32141.14.JTS-022-1715-5
储能

Efficiency Analysis of an Arrayed Liquid Piston Isothermal Air Compression System for Compressed Air Energy Storage

  • HU Shiwei1,2, XU Weiqing1,2*, JIA Guanwei3, CAI Maolin1,2, LI Jidong1,2, LU Yueke1,2, REN Teng4
作者信息 +

Efficiency Analysis of an Arrayed Liquid Piston Isothermal Air Compression System for Compressed Air Energy Storage

  • HU Shiwei1,2, XU Weiqing1,2*, JIA Guanwei3, CAI Maolin1,2, LI Jidong1,2, LU Yueke1,2, REN Teng4
Author information +
文章历史 +

摘要

压缩空气储能技术是可再生能源发展的重要技术。该技术的主要优势是储能容量大和环境友好。主要的挑战之一是储能密度低,需要天然的洞穴来储存空气。提高压缩空气储能的压力能够有效的提高储能密度。由于液体活塞式空气压缩机易于实现高压压缩,并且高效的换热能够大幅度降低气体压缩过程中的能耗,本文提出了一种通过使用多管束并联的压缩腔来增加表面积和换热量的近等温压缩方法,利用液体驱动空气压缩得到高压气体。在保持压缩腔横截面积不变的前提下,减小管道直径,增加并联管道的数量,实现压缩比为6.25:1的空气压缩,得到5MPa的高压气体。分析了不同管数条件下系统的性能。当使用1000根管、压缩和膨胀时间一分钟时,系统的压缩效率和膨胀效率可以分别达到93.0%和92.9%。本文提供了一种高效的高压压缩空气储能新方法。

Abstract

Compressed air energy storage (CAES) is an important technology in the development of renewable energy. The main advantages of CAES are its high energy capacity and environmental friendliness. One of the main challenges is its low energy density, meaning a natural cavern is required for air storage. High-pressure air compression can effectively solve the problem. A liquid piston gas compressor facilitates high-pressure compression, and efficient convective heat transfer can significantly reduce the compression energy consumption during air compression. In this paper, a near isothermal compression method is proposed to increase the surface area and heat exchange by using multiple tube bundles in parallel in the compression chamber in order to obtain high-pressure air using liquid-driven compression. Air compression with a compression ratio of 6.25:1 is achieved by reducing the tube diameter and increasing the parallel tube number while keeping the compression chamber cross-sectional area constant in order to obtain a high-pressure air of 5 MPa. The performances of this system are analyzed when different numbers of tubes are applied. A system compression efficiency of 93.0% and an expansion efficiency of 92.9% can be achieved when 1000 tubes are applied at a 1 minute period. A new approach is provided in this study to achieve high efficiency and high pressure compressed air energy storage.

关键词

liquid piston gas compressor / compressed air energy storage / convection heat transfer / high-pressure air

Key words

liquid piston gas compressor / compressed air energy storage / convection heat transfer / high-pressure air

引用本文

导出引用
HU Shiwei, XU Weiqing, JIA Guanwei, CAI Maolin, LI Jidong, LU Yueke, REN Teng. Efficiency Analysis of an Arrayed Liquid Piston Isothermal Air Compression System for Compressed Air Energy Storage[J]. 热科学学报, 2023, 32(1): 17-29 https://doi.org/10.1007/s11630-022-1715-5
HU Shiwei, XU Weiqing, JIA Guanwei, CAI Maolin, LI Jidong, LU Yueke, REN Teng. Efficiency Analysis of an Arrayed Liquid Piston Isothermal Air Compression System for Compressed Air Energy Storage[J]. Journal of Thermal Science, 2023, 32(1): 17-29 https://doi.org/10.1007/s11630-022-1715-5

参考文献

[1] Mahlia T., Saktisahdan T., Jannifar A., et al., A review of available methods and development on energy storage; technology update. Renewable and Sustainable Energy Reviews, 2014, 33: 532–545.
[2] Rogelj J., Den Elzen M., Höhne N., et al., Paris Agreement climate proposals need a boost to keep warming well below 2°C. Nature, 2016, 534(7609): 631–639.
[3] Salvia M., Reckien D., Pietrapertosa F., et al., Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renewable and Sustainable Energy Reviews, 2021, 135: 110253.
[4] Bennett J.A., Fuhrman J., Brown T., et al., Feasibility of using sCO2 turbines to balance load in power grids with a high deployment of solar generation. Energy, 2019, 181: 548–560.
[5] Zhou Q., Du D., Lu C., et al., A review of thermal energy storage in compressed air energy storage system. Energy, 2019, 188: 115993.
[6] Lund H., Werner S., Wiltshire R., et al., 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy, 2014, 68: 1–11.
[7] Luo X., Wang J., Dooner M., et al., Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 2015, 137: 511–536.
[8] Jiang R., Yin H., Yang M., et al., Thermodynamic model development and performance analysis of a novel combined cooling, heating and power system integrated with trigenerative compressed air energy storage. Energy Conversion and Management, 2018, 168: 49–59.
[9] Houssainy S., Janbozorgi M., Kavehpour P. Theoretical performance limits of an isobaric hybrid compressed air energy storage system. Journal of Energy Resources Technology, 2018, 140(10): 101201.
[10] Shengwei M., Rui L., Laijun C., et al., An overview and outlook on advanced adiabatic compressed air energy storage technique. Proceedings of the CSEE, 2018, 38(10): 2893–2907, 3140.
[11] Hameer S., Van Niekerk J.L., A review of large-scale electrical energy storage. International Journal of Energy Research, 2015, 39(9): 1179–1195.
[12] Ibrahim H., Ilinca A., Perron J., Energy storage systems—Characteristics and comparisons. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1221–1250.
[13] Zheng J., Chen R., Li L., et al., Multifunctional multi-layered stationary hydrogen storage vessels. Pressure Vessel Technology, 2005, 12: 25–28.
[14] Zheng J., Liu X., Xu P., et al., Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy, 2012, 37(1): 1048–1057.
[15] Zheng J., Liu X., Xu P., et al., Stationary flat steel ribbon wound vessels for storage of high pressure hydrogen. American Society of Mechanical Engineers, 2012, 55003: 565–569.
[16] Gouda E.M., Fan Y., Benaouicha M., et al., Review on liquid piston technology for compressed air energy storage. Journal of Energy Storage, 2021, 43: 103111.
[17] Van De Ven J.D., Li P.Y., Liquid piston gas compression. Applied Energy, 2009, 86(10): 2183–2191.
[18] Neu T., Solliec C., Dos Santos Piccoli B., Experimental study of convective heat transfer during liquid piston compressions applied to near isothermal underwater compressed-air energy storage. Journal of Energy Storage, 2020, 32: 101827.
[19] Maisonnave O., Moreau L., Aubrée R., et al., Optimal energy management of an underwater compressed air energy storage station using pumping systems. Energy Conversion and Management, 2018, 165: 771–782.
[20] Patil V.C., Ro P.I., Modeling of liquid-piston based design for isothermal ocean compressed air energy storage system. Journal of Energy Storage, 2020, 31: 101449.
[21] Qin C., Loth E., Liquid piston compression efficiency with droplet heat transfer. Applied Energy, 2014, 114: 539–550.
[22] Guanwei J., Weiqing X., Maolin C., et al., Micron-sized water spray-cooled quasi-isothermal compression for compressed air energy storage. Experimental Thermal and Fluid Science, 2018, 96: 470–481.
[23] Weiqing X., Ziyue D., Xiaoshuang W., et al., Isothermal piston gas compression for compressed air energy storage. International Journal of Heat and Mass Transfer, 2020, 155: 119779.
[24] Yunus A.C., Heat transfer: a practical approach. WBC McGraw-Hill, 1998. 
[25] Sieder E.N., Tate G.E., Heat transfer and pressure drop of liquids in tubes. Industrial & Engineering Chemistry, 1936, 28(12): 1429–1435.
[26] Wong H., Handbook of essential formulae and data on heat transfer for engineers. Addison-Wesley Longman Limited, London, 1977, pp. 100–251.
[27] Žukauskas A., Heat transfer from tubes in crossflow. Vilnius, USSR: Academy of Sciences of the Lithuanian SSR, 1972, 8: 93–158.
[28] Worster R., Denny D., Hydraulic transport of solid material in pipes. Proceedings of the Institution of Mechanical Engineers, 1955, 169(1): 563–586.
[29] Munson B.R., Young D.F., Okiishi T.H., Fundamentals of fluid mechanics. Oceanographic Literature Review, 1995, 10(42): 831.
[30] Roland W.J., Analysis of flow in pipe networks. Ann Arbor Science Publishers, Michigan, 1982, pp. 54–  149.
[31] Yan B., Wieberdink J., Shirazi F., et al., Experimental study of heat transfer enhancement in a liquid piston compressor/expander using porous media inserts. Applied Energy, 2015, 154: 40–50.
[32] Wieberdink J., Li P.Y., Simon T.W., et al., Effects of porous media insert on the efficiency and power density of a high pressure (210 bar) liquid piston air compressor/expander–An experimental study. Applied Energy, 2018, 212: 1025–1037.
[33] Kermani N.A., Petrushina I., Rokni M.M., Evaluation of ionic liquids as replacements for the solid piston in conventional hydrogen reciprocating compressors: A review. International Journal of Hydrogen Energy, 2020, 45(33): 16337–16354.

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
PDF(1512 KB)

48

Accesses

0

Citation

Detail

段落导航
相关文章

/