Performance Enhancement of Single-Phase Immersion Liquid-Cooled Data Center Servers

  • GE Junlei ,
  • XIA Feifan ,
  • ZHANG Chengbin ,
  • HUANG Yongping
展开
  • 1. School of Energy and Environment, Southeast University, Nanjing 210096, China
    2. Wuhan Digital Engineering Research Institute, Wuhan 430205, China

网络出版日期: 2024-09-08

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Performance Enhancement of Single-Phase Immersion Liquid-Cooled Data Center Servers

  • GE Junlei ,
  • XIA Feifan ,
  • ZHANG Chengbin ,
  • HUANG Yongping
Expand
  • 1. School of Energy and Environment, Southeast University, Nanjing 210096, China
    2. Wuhan Digital Engineering Research Institute, Wuhan 430205, China

Online published: 2024-09-08

Supported by

This work was supported by the National Key R&D Program of China (2021YFB3803203).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

摘要

单相浸没式液冷(SPILC)系统作为下一代数据中心最具应用前景的冷却方式,其内部的热传递特性和性能强化机制尚不清楚。为此,本文建立了一个三维稳态数值模型,探究了采用SPILC和传统风冷方法的服务器内部流动与传热特性。此外,本文还探究了器件布局的影响,并重点分析了利用挡板优化冷却液流动分布的优势。结果表明,在相同的入口雷诺数(Re)下,SPILC系统优于传统的风冷方式。当Re = 10000时,SPILC方法可使数据中心服务器最高温度降低70.13%,平均对流换热系数提高287.5%,且整体热均匀性更好。需要说明是,高功率器件布置在下游会产生“热障”,并由于流动阻力增加而降低上游器件的传热性能。而且,高功率器件之间的过大间距可能导致旁路通道的形成,进一步恶化传热。此外,在SPILC系统的进口段添加挡板可以有效提高系统的散热性能。总而言之,为了最大化浸没液冷性能,减少旁路通道和优化冷却剂的流动分布至关重要。

本文引用格式

GE Junlei , XIA Feifan , ZHANG Chengbin , HUANG Yongping . Performance Enhancement of Single-Phase Immersion Liquid-Cooled Data Center Servers[J]. 热科学学报, 2024 , 33(5) : 1757 -1772 . DOI: 10.1007/s11630-024-2010-4

Abstract

As the promising cooling method for the next generation of data centers, the internal heat transport mechanism and enhancement mechanism of single-phase immersion liquid-cooled (SPILC) systems are not yet well understood. To address this, a steady-state three-dimensional numerical model is constructed herein to analyze flow and thermal transport capacities in servers using SPILC and traditional air-cooling methods. Moreover, this paper emphasizes the influence of component positioning, and underscores the benefits of optimizing coolant flow distribution using baffles. The results indicate that the SPILC system outperforms the traditional air-cooling approach at the same inlet Reynolds number (Re). When Re=10 000, the SPILC method reduces the maximum temperature by up to 70.13%, increases the average convective heat transfer coefficient by 287.5%, and provides better overall thermal uniformity in data center servers. Moreover, placing devices downstream of high-power components creates “thermal barriers” and degrades thermal transport for upstream devices due to increased flow resistance. Excessive spacing between high-power devices can lead to the formation of bypass channels, further deteriorating heat transfer. Additionally, the addition of baffles in the inlet section of SPILC systems effectively enhances heat dissipation performance. To maximize the heat dissipation capacity, minimizing bypass channels and optimizing the flow distribution of coolants are crucial.

参考文献

[1] Masanet E., Shehabi A., Lei N., Smith S., Koomey J., Recalibrating global data center energy-use estimates. Science, 2020, 367(6481): 984–986. 
[2] Huang Y.P., Deng Z.L., Chen Y.P., Zhang C.B., Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers. Applied Energy, 2023, 335: 120745.
[3] Koorata P.K., Panchal S., Thermal management of large-sized LiFePO4 pouch cell using simplified mini-channel cold plates. Applied Thermal Engineering, 2023, 234: 121286.
[4] Vashisht S., Rakshit D., Panchal S., Fowler M., Fraser R., Thermal behaviour of Li-ion battery: An improved electrothermal model considering the effects of depth of discharge and temperature. Journal of Energy Storage, 2023, 70: 107797.
[5] Zhang C.B., Chen Y.P., Shi M.H., Peterson G.P., Optimization of heat pipe with axial “Ω”-shaped micro grooves based on a niched Pareto genetic algorithm (NPGA). Applied Thermal Engineering, 2009, 29(16): 3340–3345.
[6] Baveja R., Bhattacharya J., Panchal S., Fraser R., Fowler M., Predicting temperature distribution of passively balanced battery module under realistic driving conditions through coupled equivalent circuit method and lumped heat dissipation method. Journal of Energy Storage, 2023, 70: 107967.
[7] Huang Y.P., Cao D.C., Sun D.K., Liu X.D., Experimental and numerical studies on the heat transfer improvement of a latent heat storage unit using gradient tree-shaped fins. International Journal of Heat and Mass Transfer, 2022, 182: 121920.
[8] Huang Y.P., Liu X.D., Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins. Renewable Energy, 2021, 174: 199–217.
[9] Zhang Y.L., Zhao Y.Q., Dai S.Y., Nie B.J., Ma H.K., Li J.M., Miao Q., Jin Y., Tan L.H., Ding Y.L., Cooling technologies for data centres and telecommunication base stations – A comprehensive review. Journal of Cleaner Production, 2022, 334: 130280.
[10] Tousi M., Najafi M., Innovative hybrid nano/dielectric fluid cooling system for the new cylindrical shaped Li-ion batteries. International Journal of Thermal Sciences, 2024, 195: 108634.
[11] Ding T., Chen X.X., Cao H.W., He Z.G., Wang J.M., Li Z., Principles of loop thermosyphon and its application in data center cooling systems: A review. Renewable and Sustainable Energy Reviews, 2021, 150: 111389. 
[12] Zhou G.H., Zhou J.Z., Huai X.L., Zhou F., Jiang Y.W., A two-phase liquid immersion cooling strategy utilizing vapor chamber heat spreader for data center servers. Applied Thermal Engineering, 2022, 210: 118289. 
[13] Pambudi N.A., Sarifudin A., Firdaus R.A., Ulfa D.K., Gandidi I.M., Romadhon R., The immersion cooling technology: Current and future development in energy saving. Alexandria Engineering Journal, 2022, 61(12): 9509–9527. 
[14] Jouhara H., Robinson A.J., Experimental investigation of small diameter two-phase closed thermosyphons charged with water, FC-84, FC-77 and FC-3283. Applied Thermal Engineering, 2010, 30: 201–211.
[15] Kanbur B.B., Wu C., Fan S.M., Tong W., Duan F., Two-phase liquid-immersion data center cooling system: Experimental performance and thermoeconomic analysis. International Journal of Refrigeration, 2020, 118: 290–301. 
[16] Sun X.Q., Han Z.W., Li X.M., Simulation study on cooling effect of two-phase liquid-immersion cabinet in data center. Applied Thermal Engineering, 2022, 207: 118142. 
[17] Kanbur B.B., Wu C.L., Fan S.M., Duan F., System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments. Energy, 2021, 217: 119373. 
[18] Li Y., Zhou Z.F., Hu L.M., Bai M.L., Gao L.S., Li Y.L., Liu X.Y., Li Y.B., Song Y.C., Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions. Case Studies in Thermal Engineering, 2022, 34: 102034.
[19] Hnayno M., Chehade A., Klaba H., Polidori G., Maalouf C., Experimental investigation of a data-centre cooling system using a new single-phase immersion/liquid technique. Case Studies in Thermal Engineering, 2023, 45: 102925. 
[20] Kuncoro I.W., Pambudi N.A., Biddinika M.K., Budiyanto C.W., Optimization of immersion cooling performance using the Taguchi Method. Case Studies in Thermal Engineering, 2020, 21: 100729. 
[21] Matsuoka M., Matsuda K., Kubo H., Liquid immersion cooling technology with natural convection in data center. 2017 IEEE 6th International Conference on Cloud Networking (CloudNet), 2017, pp. 101–107. 
[22] Shah J.M., Eiland R., Rajmane P., Siddarth A., Agonafer D., Mulay V., Reliability considerations for oil immersion-cooled data centers. Journal of Electronic Packaging, 2019, 141(2): 021007. 
[23] Cheng C.C., Chang P.C., Li H.C., Hsu F.I., Design of a single-phase immersion cooling system through experimental and numerical analysis. International Journal of Heat and Mass Transfer, 2020, 160: 120203. 
[24] Luo Q.Y., Wang C.H., Wen H.P., Liu L.D., Research and optimization of thermophysical properties of sic oil-based nanofluids for data center immersion cooling. International Communications in Heat and Mass Transfer, 2022, 131: 105863.
[25] Huang Y.P., Ge J.L., Chen Y.P., Zhang C.B., Natural and forced convection heat transfer characteristics of single-phase immersion cooling systems for data centers. International Journal of Heat and Mass Transfer, 2023, 207: 124023.
[26] Shrigondekar H., Lin Y.C., Wang C.C., Investigations on performance of single-phase immersion cooling system. International Journal of Heat and Mass Transfer, 2023, 206: 123961. 
[27] Kibushi R., Yuki K., Unno N., Ogushi T., Murakami M., Numata T., Ide T., Nomura H., Enhancement of the critical heat flux of saturated pool boiling by the breathing phenomenon induced by lotus copper in combination with a grooved heat transfer surface. International Journal of Heat and Mass Transfer, 2021, 179: 121663. 
[28] MirhoseiniNejad S., Moazamigoodarzi H., Badawy G., Down D.G., Joint data center cooling and workload management: A thermal-aware approach. Future Generation Computer Systems, 2020, 104: 174–186.
[29] Lionello M., Rampazzo M., Beghi A., Varagnolo D., Vesterlund M., Graph-based modelling and simulation of liquid immersion cooling systems. Energy, 2020, 207: 118238. 
[30] Kheirabadi A.C., Groulx D., Cooling of server electronics: A design review of existing technology. Applied Thermal Engineering, 2016, 105: 622–638. 
[31] Bahmani M.H., Sheikhzadeh G., Zarringhalam M., Akbari O.A., Alrashed A.A., Shabani G.A.S. Goodarzi M., Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Advanced Power Technology, 2018, 29: 273–282. 
[32] Muneeshwaran M., Lin Y.C., Wang C.C., Performance analysis of single-phase immersion cooling system of data center using FC-40 dielectric fluid. International Communications in Heat and Mass Transfer, 2023, 145: 106843.
文章导航

/