其他

An Improved Thermal Conductivity Measurement Scheme for Macroscopic Graphitic Films Using the Laser Flash Method

  • ZHANG Peijuan ,
  • MING Xin ,
  • LIU Yingjun ,
  • WANG Xuelong ,
  • SHI Hang ,
  • HAO Yuanyuan ,
  • LU Jiahao ,
  • LIU Zheng ,
  • LAI Haiwen ,
  • ZHANG Ying ,
  • GAO Weiwei ,
  • XU Zhen ,
  • GAO Chao
展开
  • 1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China 
    2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
    3. Special Equipment Safety Supervision and Inspection Institute of Jiangsu Province, National Graphene Products Quality Inspection and Testing Center (Jiangsu), Wuxi 214174, China
    4. Hangzhou Gaoxi Technol Co., Ltd, Hangzhou 311113, China
    5. China Academy of Aerospace Aerodynamics, Beijing 100074, China

网络出版日期: 2024-07-15

基金资助

This work is supported by the National Natural Science Foundation of China (Nos. 52272046, 52090030, 52090031, 52122301, 51973191), the Natural Science Foundation of Zhejiang Province (LR23E020003), Shanxi-Zheda Institute of New Materials and Chemical Engineering (2021SZ-FR004, 2022SZ-TD011, 2022SZ-TD012, 2022SZ-TD014), Hundred Talents Program of Zhejiang University (188020*194231701/113, 112300+1944223R3/003, 112300+1944223R3/004), the Fundamental Research Funds for the Central Universities (Nos. 226-2023-00023, 226-2023-00082, 2021FZZX001-17, K20200060), National Key R&D Program of China (NO. 2022YFA1205300, NO. 2022YFA1205301, NO. 2020YFF0204400, NO. 2022YFF0609801), “Pioneer” and “Leading Goose” R&D Program of Zhejiang 2023C01190.

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

An Improved Thermal Conductivity Measurement Scheme for Macroscopic Graphitic Films Using the Laser Flash Method

  • ZHANG Peijuan ,
  • MING Xin ,
  • LIU Yingjun ,
  • WANG Xuelong ,
  • SHI Hang ,
  • HAO Yuanyuan ,
  • LU Jiahao ,
  • LIU Zheng ,
  • LAI Haiwen ,
  • ZHANG Ying ,
  • GAO Weiwei ,
  • XU Zhen ,
  • GAO Chao
Expand
  • 1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China 
    2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
    3. Special Equipment Safety Supervision and Inspection Institute of Jiangsu Province, National Graphene Products Quality Inspection and Testing Center (Jiangsu), Wuxi 214174, China
    4. Hangzhou Gaoxi Technol Co., Ltd, Hangzhou 311113, China
    5. China Academy of Aerospace Aerodynamics, Beijing 100074, China

Online published: 2024-07-15

Supported by

This work is supported by the National Natural Science Foundation of China (Nos. 52272046, 52090030, 52090031, 52122301, 51973191), the Natural Science Foundation of Zhejiang Province (LR23E020003), Shanxi-Zheda Institute of New Materials and Chemical Engineering (2021SZ-FR004, 2022SZ-TD011, 2022SZ-TD012, 2022SZ-TD014), Hundred Talents Program of Zhejiang University (188020*194231701/113, 112300+1944223R3/003, 112300+1944223R3/004), the Fundamental Research Funds for the Central Universities (Nos. 226-2023-00023, 226-2023-00082, 2021FZZX001-17, K20200060), National Key R&D Program of China (NO. 2022YFA1205300, NO. 2022YFA1205301, NO. 2020YFF0204400, NO. 2022YFF0609801), “Pioneer” and “Leading Goose” R&D Program of Zhejiang 2023C01190.

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

摘要

激光闪射法被广泛应用于高导热碳膜材料的导热性能评价,虽已建立相应的测量规范,但在具体测量过程中仍存在诸多尚未明确的测试细节,导致其导热性能评估存在显著偏差,甚至在已报道的研究工作中还存在着测试混乱和错误的情况。本文针对使用激光闪射仪测量石墨质膜导热性能过程中存在的误差因素,提出了可靠测量方案。根据激光闪射法测量的基本原理、测量要求及样品厚度适用范围,讨论了测试过程中表面预处理条件、仪器参数设置及数据分析与后处理等对测试结果的影响,并提出了相应的测试建议,以期实现碳基薄膜材料导热性能的准确评估与一致性认识。此外,还扩展了石墨烯厚膜和常见各向同性材料的激光闪射仪导热测量,以满足多元化的热测量要求。

本文引用格式

ZHANG Peijuan , MING Xin , LIU Yingjun , WANG Xuelong , SHI Hang , HAO Yuanyuan , LU Jiahao , LIU Zheng , LAI Haiwen , ZHANG Ying , GAO Weiwei , XU Zhen , GAO Chao . An Improved Thermal Conductivity Measurement Scheme for Macroscopic Graphitic Films Using the Laser Flash Method[J]. 热科学学报, 2024 , 33(4) : 1480 -1490 . DOI: 10.1007/s11630-024-1997-x

Abstract

Achieving efficient thermal management urges to exploit high-thermal-conductivity materials to satisfy the boosted demand of heat dissipation. It is critical to adopt standardized characterization protocols to evaluate the intrinsic thermal conductivity of thermal management materials. However, for the most representative laser flash method, the lack of standard measurement methodology and systematic description on the thermal diffusivity and influencing factors has led to significant deviations and confusion of the thermal conduction performance in the emerging thermal management application. Here, the measurement error factors of thermal diffusivity by the common laser flash analyzer (LFA) are discussed. Taking high-thermal-conductivity graphitic film (GF) as a typical case, the key factors are analyzed to guide the measurement protocol of related carbon-based thermal management materials. The basic principle of the LFA measurement, actual pre-processing conditions, instrument parameters setting, and data analysis are elaborated for accurate measurements. Furthermore, the graphene thick films and common isotropic materials are also extended to meet various thermal measurement requirements. Based on the existing practical problems, we propose a feasible test flow to achieve a unified and standardized thermal conductivity measurement, which is beneficial to the rapid development of carbon-based thermal management materials.

参考文献

[1] Hamann H.F., Weger A., Lacey J.A., et al., Hotspot-limited microprocessors: Direct temperature and power distribution measurements. IEEE Journal of Solid-State Circuits, 2007, 42(1): 56–65.
[2] Smoyer J.L., Norris P.M., Brief historical perspective in thermal management and the shift toward management at the nanoscale. Heat Transfer Engineering, 2018, 40(3–4): 269–282.
[3] Wang F., Fang W., Ming X., et al., A review on graphene oxide: 2D colloidal molecule, fluid physics, and macroscopic materials. Applied Physics Reviews, 2023, 10(1): 011311.
[4] Ming X., Wei A., Liu Y., et al., 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Advanced Materials, 2022, 34(28): e2201867.
[5] Peng L., Xu Z., Liu Z., et al., Ultrahigh thermal conductive yet superflexible graphene films. Advanced Materials, 2017, 29(27): 1700589.
[6] Zhong J., Sun W., Wei Q., et al., Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nature Communications, 2018, 9(1): 3484.
[7] Zhang X., Guo Y., Liu Y., et al., Ultrathick and highly thermally conductive graphene films by self-fusion. Carbon, 2020, 167: 249–255.
[8] Feng C.P., Wei F., Sun K.Y., et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Letters, 2022, 14(1): 127.
[9] Xin G., Sun H., Hu T., et al., Large-area freestanding graphene paper for superior thermal management. Advanced Materials, 2014, 26(26): 4521–4526.
[10] Dai W., Ma T., Yan Q., et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano, 2019, 13(10): 11561–11571.
[11] Han Z., Wang J., Liu S., et al., Electrospinning of neat graphene nanofibers. Advanced Fiber Materials, 2021, 4(2): 268–279.
[12] Huang H., Ming X., Wang Y., et al., Polyacrylonitrile- derived thermally conductive graphite film via graphene template effect. Carbon, 2021, 180: 197–203.
[13] Dai W., Lv L., Lu J., et al., A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano, 2019, 13: 1547–1554.
[14] Chen L., Liu T.H., Wang X., et al., Near-theoretical thermal conductivity silver nanoflakes as reinforcements in gap‐filling adhesives. Advanced Materials, 2023, 35(31): 2211100.
[15] Gao J., Yan Q., Lv L., et al., Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity. Chemical Engineering Journal, 2021, 419: 129609.
[16] Kumar P., Shahzad F., Yu S., et al., Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon, 2015, 94: 494–500.
[17] Guo Y., Dun C., Xu J., et al., Ultrathin, washable, and large-area graphene papers for personal thermal management. Small, 2017, 13(44): 1702645.
[18] Palacios A., Cong L., Navarro M.E., et al., Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review. Renewable and Sustainable Energy Reviews, 2019, 108: 32–52.
[19] Group - NETZSCH Holding. https://www.netzsch.com/en.
[20] Kim S.K., Kim Y.J., Determination of apparent thickness of graphite coating in flash method. Thermochimica Acta, 2008, 468(1–2): 6–9.
[21] Cape J.A., Lehman G.W., Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity. Journal of Applied Physics, 1963, 34(7): 1909–1913.
[22] Cowan R.D., Pulse method of measuring thermal diffusivity at high temperatures. Journal of Applied Physics, 1963, 34(4): 926–927.
[23] Akoshima M., Baba T., Study on a thermal-diffusivity standard for laser flash method measurements. International Journal of Thermophysics, 2006, 27(4): 1189–1203.
[24] Parker W.J., Jenkins R.J., Butler C.P., et al., Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of Applied Physics, 1961, 32(9): 1679–1684.
[25] Donaldson A.B., Radial conduction effects in the pulse method of measuring thermal diffusivity. Journal of Applied Physics, 1972, 43(10): 4226–4228.
[26] Donaldson A.B., Taylor R.E., Thermal diffusivity measurement by a radial heat flow method. Journal of Applied Physics, 1975, 46(10): 4584–4589.
[27] Vozár L., Hohenauer W., Flash method of measuring the thermal diffusivity. A review. High Temperatures-High Pressures, 2003, 35/36(3): 253–264.
[28] Chu F.I., Taylor R.E., Donaldson A.B., Thermal diffusivity measurements at high temperatures by the radial flash method. Journal of Applied Physics, 1980, 51(1): 336–341.
[29] Lim K.H., Kim S.K., Chung M.K., Improvement of the thermal diffusivity measurement of thin samples by the flash method. Thermochimica Acta, 2009, 494(1–2): 71–79.
[30] Liu Y., Qiu L., Liu J., et al., Enhancing thermal transport across diamond/graphene heterostructure interface. International Journal of Heat and Mass Transfer, 2023, 209: 124123.
[31] Qiu L., Ma Y., Wang S., et al., High-accuracy thermophysical property measurement technique based on Labview-3ω method. AIP Advances, 2023, 13(4): 045014.
[32] Cernuschi F., Lorenzoni L., Bianchi P., et al., The effects of sample surface treatments on laser flash thermal diffusivity measurements. Infrared Physics & Technology, 2002, 43(3–5): 133–138.
[33] Milošević N.D., Simultaneous estimation of the thermal diffusivity and thermal contact resistance of thin solid films and coatings using the two-dimensional flash method. International Journal of Thermophysics, 2003, 24(3): 799–819.
[34] Litovsky E., Horodetsky S., Kleiman J., Non-destructive thermal diagnostics of porous materials. International Journal of Thermophysics, 2005, 26(6): 1815–1831.
[35] Blumm J., Lemarchand S., Influence of test conditions on the accuracy of laser flash measurements. High Temperatures-High Pressures, 2002, 34(5): 523–528.
[36] Baba T., Ono A., Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Measurement Science and Technology, 2001, 12(12): 2046–2057.
[37] Ohta H., Baba T., Shibata H., et al., Evaluation of the effective sample temperature in thermal diffusivity measurements using the laser flash method. International Journal of Thermophysics, 2002, 23(6): 1659–1668.
[38] Akoshima M., Hay B., Zhang J., et al., International comparison on thermal-diffusivity measurements for iron and isotropic graphite using the laser flash method in CCT-WG9. International Journal of Thermophysics, 2012, 34(5): 763–777.
[39] Cape J.A., Lehman G.W., Temperature and finite pulse‐time effects in the flash method for measuring thermal diffusivity. Journal of Applied Physics, 1963, 34(7): 1909–1913.
[40] Taylor R.E., Cape J.A., Finite pulse-time effects in the flash diffusivity technique. Applied Physics Letters, 1964, 5(10): 212–213.
[41] Cezairliyan A., Baba T., Taylor R., A high-temperature laser-pulse thermal diffusivity apparatus. International Journal of Thermophysics, 1994, 15(2): 317–341.
[42] Gouzman I., Grossman E., Verker R., et al., Advances in polyimide-based materials for space applications. Advanced Materials, 2019, 31(18): e1807738.
[43] Watt D.A., Theory of thermal diffusivity by pulse technique. British Journal of Applied Physics, 1966, 17(2): 231–240.
[44] Schoderböck P., Klocker H., Sigl L.S., et al., Evaluation of the thermal diffusivity of thin specimens from laser flash data. International Journal of Thermophysics, 2009, 30(2): 599–607.
文章导航

/