传热传质

Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger

  • WANG Yanquan ,
  • LU Yuanwei ,
  • WANG Yuanyuan ,
  • HAN Xinlong ,
  • WU Yuting ,
  • GAO Qi
展开
  • MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China

网络出版日期: 2024-07-15

基金资助

This work is supported by the National Natural Science Foundation of China (No. 52076006) and National Key Research and Development Program of China (No. 2022YFB4202402).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger

  • WANG Yanquan ,
  • LU Yuanwei ,
  • WANG Yuanyuan ,
  • HAN Xinlong ,
  • WU Yuting ,
  • GAO Qi
Expand
  • MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China

Online published: 2024-07-15

Supported by

This work is supported by the National Natural Science Foundation of China (No. 52076006) and National Key Research and Development Program of China (No. 2022YFB4202402).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

摘要

超临界二氧化碳印刷电路板换热器有望应用于第三代太阳能热发电,然而超临界二氧化碳进入换热器时的均匀程度对换热器的综合性能有很大影响,为了提高入口集管对流量分配的均匀程度。本文通过数值模拟的方法对印刷电路板换热器的入口集管进行研究和结构优化。结果表明,当超临界二氧化碳流过集管腔时会产生涡流,涡流会增大流量的不均匀分配,减小涡流的产生会提高流量的均匀分配。当入口集管的无量纲因子为6时,双曲线构型为最优结构。还通过增加过渡段来减小涡流区域,结果表明当扩张角为10°时的结构最好,相比于双曲线构型不均匀度降低了21%,为工程实践提供了指导意义。

本文引用格式

WANG Yanquan , LU Yuanwei , WANG Yuanyuan , HAN Xinlong , WU Yuting , GAO Qi . Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger[J]. 热科学学报, 2024 , 33(4) : 1458 -1467 . DOI: 10.1007/s11630-024-2002-4

Abstract

Supercritical carbon dioxide printed circuit board heat exchangers are expected to be applied in third-generation solar thermal power generation. However, the uniformity of supercritical carbon dioxide entering the heat exchanger has a significant impact on the overall performance of the heat exchanger. In order to improve the uniformity of flow distribution in the inlet header, this article studies and optimizes the inlet header of a printed circuit board heat exchanger through numerical simulation. The results indicate that when supercritical carbon dioxide flows through the header cavity, eddy currents will be generated, which will increase the uneven distribution of flow rate, while reducing the generation of eddy currents will improve the uniform distribution of flow rate. When the dimensionless factor of the inlet header is 6, the hyperbolic configuration is the optimal structure. We also reduced the eddy current region by adding transition segments, and the results showed that the structure was the best when the dilation angle was 10°, which reduced the non-uniformity by 21% compared to the hyperbolic configuration, providing guidance for engineering practice.

参考文献

[1] Yao M.L., Gan Y.H., Experimental study of a two-phase thermosyphon loop with a horizontal parallel tube evaporator under non-uniform heating conditions. Thermal Science and Engineering Progress, 2023, 44: 102053. DOI: 10.1016/j.tsep.2023.102053.
[2] Li R., Gan Y.H., Luo Q.L., Yan Y.Y., Li L., Research progress on efficient thermal management system for electric vehicle batteries based on two-phase transformation. Applied Thermal Engineering, 2023, 234: 121270. DOI: 10.1016/j.applthermaleng.2023.121270.
[3] Yi F., Gan Y.H., X Z.F., Li Y., Chen H.Y., Experimental study on thermal performance of ultra-thin heat pipe with a novel composite wick structure. International Journal of Thermal Sciences, 2023, 193: 108539. DOI: 10.1016/j.ijthermalsci.2023.108539.
[4] Yi F., Gan Y.H., Xin Z.F., Li Y., Chen H.Y., Analysis of thermal characteristics of the heat pipes with segmented composite wicks. International Journal of Thermal Sciences, 2023, 191: 108341.  DOI: 10.1016/j.ijthermalsci.2023.108341.
[5] Mehos M., Turchi C., Vidal J., Wagner M., Kruizenga A., Concentrating solar power gen3 demonstration roadmap. U.S. Department of Energy, 2017. DOI: 10.2172/1338899.
[6] Sarmiento A.P.C., Milanez F.H., Mantelli M.B.H., Theoretical models for compact printed circuit heat exchangers with straight semicircular channels. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2021, 184: 115435. DOI: 10.1016/j.applthermaleng.2020.115435.
[7] Muhammad S., Berrouk A.S., Siddiqui M.S., Awais A.A., Numerical investigation of thermal and hydraulic characteristics of sCO2-water printed circuit heat exchangers with zigzag channels. Energy Conversion and Management, 2020, 224: 113375. DOI: 10.1016/j.enconman.2020.113375.
[8] Shi M.Q., Li Y., Wang Y., Li Q., Cai W.H., Study on flow and heat transfer characteristics of a zigzag microchannel with supercritical methane by numerical simulation. Energy Conservation Technology, 2020, 38(03): 213–216, 229.
[9] Cai W.H., Li Y., Li Q., Wang Y., Chen J., Numerical investigation on thermal-hydraulic performance of supercritical LNG in a Zigzag mini-channel of printed circuit heat exchanger. Applied Thermal Engineering, 2022, 214: 118760. 
[10] Liu S., Liu M., Liu R.L., Guo R., Huang Y.P., Zhu X.L., Han B., Huang J.L., Tang J., Thermal-hydraulic performance of zigzag channels with Bending number below unity for printed circuit heat exchanger. Applied Thermal Engineering, 2022, 215: 118989.
[11] Yang Y., Li H., Yao M., Gan W., Zhang Y.F., Investigation on the effects of narrowed channel cross-sections on the heat transfer performance of a wavy-channeled PCHE. International Journal of Heat and Mass Transfer, 2019, 135: 33–43.
[12] Joonyoung S., Lee J.Y., Effect of tangled channels on the heat transfer in a printed circuit heat exchanger. International Journal of Heat and Mass Transfer. 2017, 115: 647–656.
[13] Zhao Z.C., Zhang Y., Chen X.D., Ma X.L., Yang S., Li S.L., Experimental and numerical investigation of thermal-hydraulic performance of supercritical nitrogen in airfoil fin printed circuit heat exchanger. Applied Thermal Engineering, 2019, 168: 114829.
[14] Chen F., Zhang L.S., Huai X.L., Li J.F., Zhang H., Liu Z.G., Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil. Nuclear Engineering and Design, 2017, 315: 42–50. 
[15] Li F., Lu Y.W., Wang Y.Q., The influence of wing structure on the flow and heat transfer characteristics of printed circuit board heat exchangers. Energy Storage Science and Technology, 2024, 13(02): 416–424.
[16] Zhu C.Y., Guo Y., Yang H.Q., Ding B., Duan X.Y., Investigation of the flow and heat transfer characteristics of helium gas in printed circuit heat exchangers with asymmetrical airfoil fins. Applied Thermal Engineering, 2020, 186: 116478. 
[17] Mueller A.C., Effects of some types of maldistribution on the performance of heat exchangers. Heat Transfer Engineering, 1987, 8(2): 75–86.
[18] Tereda F.A., Srihari N., Sunden B., Das S.K., Experimental investigation on port-to-channel flow maldistribution in plate heat exchangers. Heat Transfer Engineering, 2007, 28(5): 435–443.
[19] Wang C.C., Yang K.S., Tsai J.S., Chen I.Y., Characteristics of flow distribution in compact parallel flow heat exchangers, part I: Typical inlet header. Applied Thermal Engineering, 2011, 31(16): 3226–3234.
[20] Chu W.X., Ma T., Zeng M., Qu T., Wang L.B., Wang Q.W., Improvements on maldistribution of a high temperature multi-channel compact heat exchanger by different inlet baffles. Energy, 2014, 75: 104–115.
[21] Ma T., Zhang P., Shi H.N., Chen Y.T., Wang Q.W., Prediction of flow maldistribution in printed circuit heat exchanger. International Journal of Heat and Mass Transfer, 2020, 152: 119560.
[22] Koo G.W., Lee S.M., Kim K.Y., Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling. Applied Thermal Engineering, 2014, 72(1): 90–96.
[23] Camilleri R., Howey D.A., McCulloch M.D., Predicting the flow distribution in compact parallel flow heat exchangers. Applied Thermal Engineering, 2015, 90: 551–558.
[24] Chu W.X., Bennett K., Cheng J., Chen Y.T., Wang Q.W., Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger. Applied Thermal Engineering, 2019, 146: 805–814.
[25] Shi H.Y., Li M.J., Wang W.Q., Qiu Y., Tao W.Q., Heat transfer and friction of molten salt and supercritical CO2 flowing in an airfoil channel of a printed circuit heat exchanger. International Journal of Heat and Mass Transfer, 2020, 150: 119006.
[26] Siddiqui O.K., Zubair S.M., Efficient energy utilization through proper design of microchannel heat exchanger manifold: A comprehensive review. Renewable and Sustainable Energy Reviews. 2017, 74: 969–1002.
[27] Wang H., Gan Y.H., Li R., Liu F.M., Li Y., Experimental study on the thermal performance of a liquid-cooled heat sink integrating heat pipes for dual CPU servers. Applied Thermal Engineering, 2024, 236: 121851.

文章导航

/