[1] IIR. The role of refrigeration in the global economy. 29th Informatory Note on Refrigeration Technologies, 2015.
[2] Molenbroek E., Smith M., Surmeli N., et al., Savings and benefits of global regulations for energy efficient products. European Commission, 2015. https://ec.europa.eu/energy/2015.
[3] Heredia-Aricapa Y., Belman-Flores J.M., Mota-Babiloni A., et al., Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration, 2020, 111: 113–123.
[4] Kitanovski A., Energy applications of magnetocaloric materials. Advanced Energy Materials, 2020, 10(10): 1903741.
[5] Kuang Y., Qi J., Xu H., et al., Low-pressure-induced large reversible barocaloric effect near room temperature in (MnNiGe)-(FeCoGe) alloys. Scripta Materialia, 2021, 200: 113908.
[6] Neese B., Chu B., Lu S.-G., et al., Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321(5890): 821–823.
[7] Manosa L., Planes A., Materials with giant mechanocaloric effects: Cooling by strength. Advanced Materials, 2017, 29(11): 1–25.
[8] Chen J., Lei L., Fang G., Elastocaloric cooling of shape memory alloys: A review. Materials Today Communications, 2021, 28: 102706.
[9] Guo M., Sun B., Wu M., et al., Effect of polarization fatigue on the electrocaloric effect of relaxor Pb0.92La0.08Zr0.65Ti0.35O3 thin film. Applied Physics Letters, 2020, 117(20): 202901.
[10] Greibich F., Schwödiauer R., Mao G., et al., Elastocaloric heat pump with specific cooling power of 20.9 W·g–1 exploiting snap-through instability and strain-induced crystallization. Nature Energy, 2021, 6(3): 260–267.
[11] Boldrin D., Fantastic barocalorics and where to find them. Applied Physics Letters, 2021, 118(17): 170502.
[12] Manosa L., Gonzalez-Alonso D., Planes A., et al., Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nature Communications, 2011, 2: 595.
[13] Manosa L., Gonzalez-Alonso D., Planes A., et al., Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nature Materials, 2010, 9(6): 478–481.
[14] Yuce S., Barrio M., Emre B., et al., Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Applied Physics Letters, 2012, 101(7): 071906.
[15] Stern-Taulats E., Planes A., Lloveras P., et al., Barocaloric and magnetocaloric effects in Fe49Rh51. Physical Review B, 2014, 89(21): 214105.
[16] Boldrin D., Mendive-Tapia E., Zemen J., et al., Barocaloric properties of quaternary Mn-3(Zn,In)N for room-temperature refrigeration applications. Physical Review B, 2021, 104(13): 134101.
[17] Moya X., Mathur N.D., Caloric materials for cooling and heating. Science, 2020, 370(6518): 797–803.
[18] Li B., Kawakita Y., Ohira-Kawamura S., et al., Colossal barocaloric effects in plastic crystals. Nature, 2019, 567(7749): 506–510.
[19] Lloveras P., Aznar A., Barrio M., et al., Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nature Communications, 2019, 10(1): 1803.
[20] Dai Z.F., She X.H., Wang C., et al., Thermodynamic analysis on the performance of barocaloric refrigeration systems using Neopentyl Glycol as the refrigerant. Journal of Thermal Science, 2023, 32(3): 1063–1073.
[21] Tušek J., Engelbrecht K., Eriksen D., et al., A regenerative elastocaloric heat pump. Nature Energy, 2016, 1(10): 16134.
[22] Venkitaraj K.P., Suresh S., Praveen B., et al., Experimental heat transfer analysis of macro packed neopentylglycol with CuO nano additives for building cooling applications. Journal of Energy Storage, 2018, 17: 1–19.
[23] Praveen B., Suresh S., Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Engineering Science and Technology-An International Journal-Jestech. 2018, 21(5): 1086–1094.
[24] Aznar A., Lloveras P., Barrio M., et al., Reversible and irreversible colossal barocaloric effects in plastic crystals. Journal of Materials Chemistry A, 2020, 8(2): 639–647.
[25] Zeng J.-L., Zhou L., Zhang Y.-F., et al., Effects of some nucleating agents on the supercooling of erythritol to be applied as phase change material. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1291–1299.
[26] Venkitaraj K.P., Suresh S., Praveen B., et al., Pentaerythritol with alumina nano additives for thermal energy storage applications. Journal of Energy Storage, 2017, 13: 359–377.
[27] Rahman M.M., Hosur M., Ludwick A.G., et al., Thermo-mechanical behavior of epoxy composites modified with reactive polyol diluent and randomly- oriented amino- functionalized multi-walled carbon nanotubes. Polymer Testing, 2012, 31(6): 777–784.
[28] Han Y., Xu Y., Zhang S., et al., Progress of improving mechanical strength of electrospun nanofibrous membranes. Macromolecular Materials and Engineering, 2020, 305(11): 2000230.
[29] Wu J.H., Zhang H.L., Zhang Y., et al., Enhanced mechanical properties in Al/diamond composites by Si addition. Rare Metals, 2016, 35(9): 701–704.
[30] Silvestro L., Gleize P.J., Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: A systematic literature review. Construction and Building Materials, 2020, 264(20): 120237.
[31] He Z., Zhou G., Byun J.-H., et al., Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale, 2019, 11(13): 5884–5890.
[32] Baig Z., Mamat O., Mustapha M., Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: A review. Critical Reviews in Solid State and Materials Sciences, 2018, 43(1): 1–46.
[33] Qu Y., Wang S., Zhou D., et al., Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives. Renewable Energy, 2020, 146: 2637–2645.
[34] Nitesh, Kumar A., Saini S., et al., Morphology and tensile performance of MWCNT/TiO2-epoxy nanocomposite. Materials Chemistry and Physics, 2022, 277: 125336.