Experimental Study on Soot Suppression of Acetylene Diffusion Flame by Acoustic-Excited Oscillation in Rijke-Type Burner

  • ZHU Yibin ,
  • GUO Hui ,
  • SUO Yan’ge ,
  • WU Minle ,
  • YE Yanghui ,
  • LI Guoneng ,
  • ZHANG Zhiguo
展开
  • School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

网络出版日期: 2024-01-16

基金资助

This work is financially supported by the National Natural Science Foundation of China (51776188, 21805244), the key program of Natural Science Foundation of Zhejiang Province (LZ21E060001), Fundamental Research Funds of Zhejiang University of Science and Technology (No. 2021QN029).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Experimental Study on Soot Suppression of Acetylene Diffusion Flame by Acoustic-Excited Oscillation in Rijke-Type Burner

  • ZHU Yibin ,
  • GUO Hui ,
  • SUO Yan’ge ,
  • WU Minle ,
  • YE Yanghui ,
  • LI Guoneng ,
  • ZHANG Zhiguo
Expand
  • School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

Online published: 2024-01-16

Supported by

This work is financially supported by the National Natural Science Foundation of China (51776188, 21805244), the key program of Natural Science Foundation of Zhejiang Province (LZ21E060001), Fundamental Research Funds of Zhejiang University of Science and Technology (No. 2021QN029).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

摘要

本文报道了由声激励引起的火焰振荡可以有效地抑制Rijke型燃烧器中碳烟的产生。当声学频率接近燃烧器系统的固有频率时,会产生共振,导致火焰剧烈振荡。讨论了不同火焰位置驻波声场与碳烟抑制效率之间的关系。与自激振荡下相比,当火焰中引入外力时,玻璃管中的振荡燃烧发生在更大的区域。在不同位置处不同的碳烟抑制效率的根本原因是驻波声场导致颗粒在玻璃管的不同位置以不同的速度移动。轴向颗粒速度差导致声涡流的形成和火焰形状的变化。高颗粒速度使玻璃管内的空气进入湍流状态,使火焰温度上升。仿真结果表明,在声学振荡下,碳烟的表面生长速率降低,而氧化速率提高,从而抑制了碳烟的生长。该研究可为振荡燃烧在碳烟抑制中的实际应用提供一些参考。

本文引用格式

ZHU Yibin , GUO Hui , SUO Yan’ge , WU Minle , YE Yanghui , LI Guoneng , ZHANG Zhiguo . Experimental Study on Soot Suppression of Acetylene Diffusion Flame by Acoustic-Excited Oscillation in Rijke-Type Burner[J]. 热科学学报, 2024 , 33(1) : 235 -248 . DOI: 10.1007/s11630-023-1854-3

Abstract

This work reports that the flame oscillation induced by acoustic excitation can effectively suppress soot generation in Rijke-type burners. When the acoustic frequency is close to the natural frequency of the burner system, it can produce resonance resulting in intense oscillation of the flame. The relationship between the soot suppression efficiency and the acoustic field of standing wave at different flame positions is discussed. Compared with that under self-excited oscillation, when there is external forced acoustic force introduced to the flame, oscillation combustion occurred in a lager zone in the glass tube. The fundamental cause of different soot suppression efficiency at different positions is that the standing wave acoustic field causes the particles to move at different speeds in different positions of the glass tube. The axial particle velocity difference results in the formation of acoustic vortexes and the change of the flame shape. The high particle velocity causes the air in the glass tube to turn into the turbulent condition and make the flame temperature rise. Simulation results show that the surface growth rate of soot is reduced, while the oxidation rate of soot is enhanced, which result in the soot suppression under acoustic oscillation. This study can provide some reference for the practical application of oscillate combustion in soot suppression.

参考文献

[1] Zhao D., Gutmark E., Goey P., A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors. Progress in Energy and Combustion Science, 2018, 66: 42–82.
[2] Dworkin S.B., Connelly B.C., Schaffer A.M., Bennett B.A.V., Long M.B., Smooke M.D., Miller J.H., Computational and experimental study of a forced, time-dependent, methane-air coflow diffusion flame. Proceedings of the Combustion Institute, 2007, 31(1): 971–978.
[3] Li J., Huang J., Chen X., Zhao D., Shi B., Wei Z., Effects of heat recirculation on combustion characteristics of n-heptane in micro combustors. Applied Thermal Engineering, 2016, 109: 697–708.
[4] Wen J.P., Zhao D., Zhang C.W., An overview of electricity powered vehicles: lithium-ion battery energy storage density and energy conversion efficiency. Renewable Energy, 2020, 162: 1629–1648.
[5] Chu H.Q., Xiang L.K., Nie X.K., Ya Y.C., Gu M.Y., E J.Q., Laminar burning velocity and pollutant emissions of the gasoline components and its surrogate fuels: A review. Fuel, 2020, 269: 117451.
[6] Connelly B.C., Long M.B., Smooke M.D., Hall R.J., Colket M.B., Computational and experimental investigation of the interaction of soot and NO in coflow diffusion flames. Proceedings of the Combustion Institute, 2009, 32(1): 777–784.
[7] Shaddix C.R., Harrington J.E., Smyth K.C., Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame. Combustion and Flame, 1994, 99(3–4): 723–732.
[8] Zhao D., Guan Y.H., Characterizing modal exponential growth behaviors of self-excited transverse and longitudinal thermoacoustic instabilities. Physics of Fluids, 2022, 34(2): 024109.
[9] Cai T., Zhao D., Mitigating NOx emissions from an ammonia-fueled micro-power system with a perforated plate implemented. Journal of Hazardous Materials, 2021, 401: 123848.
[10] Chen Y., Zhang J., Effects of gas temperature fluctuation on the soot formation reactions. Chinese Journal of Chemical Engineering, 2013, 21(1): 25–30.
[11] Liang J., Zhang Q., Chen Z., Zheng Z., Yang C., Ma Q., The combustion and emission characteristics of diesel-ethanol blends with THF as cosolvents in a diesel engine operating with EGR. Fuel, 2021, 298: 120843.
[12] Zhou M., Yan F., Ma L., Jiang P., Wang Y., Chung S.H., Chemical speciation and soot measurements in laminar counterflow diffusion flames of ethylene and ammonia mixtures. Fuel, 2022, 308: 122003.
[13] Chu H., Xiang L., Nie X., Ya Y., Gu M., Jiaqiang E., Laminar burning velocity and pollutant emissions of the gasoline components and its surrogate fuels: A review. Fuel, 2020, 269: 117451.
[14] Pauletto G., Mendil M., Libretto N., Mocellin P., Miller J.T., Patience G.S., Short contact time CH4 partial oxidation over Ni based catalyst at 1.5 MPa. Chemical Engineering Journal, 2021, 414: 128831.
[15] Xu L., Wang Y., Liu D., Effects of oxygenated biofuel additives on soot formation: A comprehensive review of laboratory-scale studies. Fuel, 2022, 313: 122635.
[16] Chu H.Q., Ya Y.C., Nie X.K., Qiao F., E J.Q., Effects of adding cyclohexane, n-hexane, ethanol, and 2,5-dimethylfuran to fuel on soot formation in laminar coflow n-heptane/iso-octane diffusion flame. Combustion and Flame, 2021, 225: 120–135.
[17] Mansouri A., Zimmer L., Dworkin S.B., Eaves N.A., Impact of pressure-based HACA rates on soot formation in varying-pressure coflow laminar diffusion flames. Combustion and Flame, 2020, 218: 109–120.
[18] Commodo M., Karatas A.E., De Falco G., Minutolo P., D’Anna A., Gulder O.L., On the effect of pressure on soot nanostructure: a Raman spectroscopy investigation. Combustion and Flame, 2020, 219: 13–19.
[19] Zhao D., Transient growth of flow disturbances in triggering a Rijke tube combustion instability. Combustion and Flame, 2012, 159(6): 2126–2137.
[20] Zhang Z., Guan D., Zheng Y., Li G., Characterizing premixed laminar flame-acoustics nonlinear interaction. Energy Conversion and Management, 2015, 105: 1399–1399.
[21] Zhang Z., Zhao D., Ni S., Sun Y., Wang B., Chen Y., Li S., Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl burner. Applied Energy, 2019, 235: 463–472.
[22] Ye Y., Luo X., Dong C., Xu Y., Zhang Z., Numerical and experimental investigation of soot suppression by acoustic oscillated combustion. ACS Omega, 2020, 5(37): 23866–23875.
[23] Zhang Z., Zhao W., Sun K., Suo Y., Ye Y., Fan Z., Wu P., Numerical study on soot suppression of acetylene diffusion flame by acoustic oscillated combustion. Journal of Energy Engineering, 2021, 147(3): 04021008.
[24] Guo H., Wu M., Zhu Y., Li Q., Weng K., Suo Y., Zhang Z., Influence of acoustic energy on suppression of soot from acetylene diffusion flame. Combustion and Flame, 2021, 230: 111455.
[25] Foo K.K., Sun Z., Medwell P.R., Alwahabi Z.T., Nathan G.J., Dally B.B., Influence of nozzle diameter on soot evolution in acoustically forced laminar non-premixed flames. Combustion and Flame, 2018, 194: 376–386.
[26] Foo K.K., Sun Z., Medwell P.R., Alwahabi Z.T., Dally B.B., Nathan G.J., Experimental investigation of acoustic forcing on temperature, soot volume fraction and primary particle diameter in non-premixed laminar flames. Combustion and Flame, 2017, 181: 270–282.
[27] Foo K.K., Sun Z., Medwell P.R., Alwahabi Z.T., Nathan G.J., Dally B.B., Soot evolution and flame response to acoustic forcing of laminar non-premixed jet flames at varying amplitudes. Combustion and Flame, 2018, 198: 249–259.
[28] Fu C., Yang X., Li Z., Zhang H., Yang Y., Gao Y., Experimental investigation on an acoustically forced flame with simultaneous high-speed LII and stereo PIV at 20 kHz. Applied Optics, 2019, 58(10): C104–C111.
[29] Oliveira F.L., Barreta L.G., Lacava P.T., Experimental aspects of soot presence in pulsating diffusion flame. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2009, 31(2): 137–141.
[30] Zhao D., Li XY., Minimizing transient energy growth of nonlinear thermoacoustic oscillations. International Journal of Heat and Mass Transfer, 2015, 81: 188–197.
[31] Li J.W., Huang J.H., Yan M., Zhao D., Zhao J.Y., Wei Z.J., Wang N.F., Experimental study of n-heptane/air combustion in meso-scale burners with porous media. Experimental Thermal and Fluid Science, 2014, 52: 47–58.
[32] Li X.Y., Zhao D., Shi B.L., Coherence resonance and stochastic bifurcation behaviors of simplified standing-wave thermoacoustic systems. The Journal of the Acoustical Society of America, 2019, 145(2): 692–702.
[33] Zhao D., A real-time plane-wave decomposition algorithm for characterizing perforated liners damping at multiple mode frequencies. The Journal of the Acoustical Society of America, 2011, 129(3): 1184–1192.
[34] Thumuluru S.K., Lieuwen T., Characterization of acoustically forced swirl flame dynamics. Proceedings of the Combustion Institute, 2009, 32(2): 2893–2900.
[35] Li S.H., Zhao D., Ji C.Z., Li J.W., Combustion instabilities in a bifurcating tube: open- and closed-loop measurements. AIAA Journal, 2014, 52(11): 2513–2523.
[36] Li X.Y., Zhao D., Li J.W., Xu Y.S., Experimental evaluation of anti-sound approach in damping self-sustained thermoacoustics oscillations. Journal of Applied Physics, 2013, 114(20): 204903.
[37] Li X.Y., Wang Y.H., Wang N.F., Zhao D., Stochastic properties of thermoacoustic oscillations in an annular gas turbine combustion chamber driven by colored noise. Journal of Sound and Vibration, 2020, 480(18): 11542.
[38] Bonciolini G., Faure-Beaulieu A., Bourquard C., Noiray N., Low order modelling of thermoacoustic instabilities and intermittency: Flame response delay and nonlinearity. Combustion and Flame, 2021, 226: 396–411.
[39] Wu G., Lu Z., Pan W., Guan Y., Li S., Ji C.Z., Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater. Applied Energy, 2019, 239: 331–342.
[40] Juniper M.P., Sujith R.I., Sensitivity and nonlinearity of thermoacoustic oscillations. Annual Review of Fluid Mechanics, 2018, 50: 661–689.
[41] Pawar S.A., Seshadri A., Unni V.R., Sujith R.I., Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent re-active flow. Journal of Fluid Mechanics, 2017, 827: 664–673.
[42] Jiménez C., Fernández-Galisteo D., Kurdyumov V.N., Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end. Combustion and Flame, 2021, 225: 499–512.
[43] Dang N., Zhang J., Deguchi Y., Numerical study on the route of flame-induced thermoacoustic instability in a Rijke burner. Applied Sciences, 2021, 11(4): 1590.
[44] Kojourimanesh M., Kornilov V., Arteaga I.L., Goey P., Thermo-acoustic flame instability criteria based on upstream reflection coefficients. Combustion and Flame, 2021, 225: 435–443.
[45] Yu Z., Ai Y., Wang Y., Luo C., Thermoacoustic instability analysis of a laminar lean premixed flame under autoignitive conditions. Combustion and Flame, 2021, 225: 513–523.
[46] Zhao D., Guan Y., Reinecke A., Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a burner. Communications Physics, 2019, 2(1): 1–10.
[47] Rayleigh L., The theory of sound SE. MACMILLAN London, U.K., 1929.
[48] Farhat S., Kleiner D., Zhang Y., Jet diffusion flame characteristics in a loudspeaker-induced standing wave. Combustion and Flame, 2005, 142: 317–323.
[49] Zhao D., Transmission loss analysis of a parallel-coupled helmholtz resonator network. AIAA Journal, 2012, 50(6): 1339–1346.
[50] Zhao D., Gutmark E., Reinecke A., Mitigating self-excited flame pulsating and thermoacoustic oscillations using perforated liners. Science Bulletin, 2019, 64(13): 941–952.
[51] Ma D., Fundamentals of modern acoustic theory. Science Press Distribution Department, Beijing, China, 2004.
[52] Saito M., Sato M., Nishimura A., Soot suppression by acoustic oscillated combustion. Fuel, 1998, 77(9): 973–978.
[53] Li G., Zhou M., Wang Y., Sensitivity of soot formation to strain rate in steady counterflow flames determines its response under unsteady conditions. Combustion and Flame, 2022, 241: 112107.
[54] Zou Z., Sun H., Chen C., Zhao X., Huang Q., Ying Y., Liu D., Quantitative optical diagnostics on macroscopic soot onset for ethylene diffusion flames with ethyl ester addition. Optics Express, 2022, 30(12): 21410–21422.
[55] Xu L., Yan F., Zhou M., Wang Y., An experimental and modeling study on sooting characteristics of laminar counterflow diffusion flames with partial premixing. Energy, 2021, 218: 119479.
[56] Xu L., Yan F., Wang Y., Chung S.H., Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition. Combustion and Flame, 2020, 213: 14–25.
[57] Zhou M., Yan F., Zhong X., Xu L., Wang Y., Sooting characteristics of partially-premixed flames of ethanol and ethylene mixtures: Unravelling the opposing effects of ethanol addition on soot formation in non-premixed and premixed flames. Fuel, 2021, 291: 120089.
文章导航

/