Flow Loss Mechanism in a Supercritical Carbon Dioxide Centrifugal Compressor at Low Flow Rate Conditions

  • YANG Zimu ,
  • JIANG Hongsheng ,
  • ZHUGE Weilin ,
  • CAI Ruikai ,
  • YANG Mingyang ,
  • CHEN Haoxiang ,
  • QIAN Yuping ,
  • ZHANG Yangjun
展开
  • 1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

网络出版日期: 2024-01-16

基金资助

This research was supported by the National Key Research and Development Program of China (No. 2018YFB1501004).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Flow Loss Mechanism in a Supercritical Carbon Dioxide Centrifugal Compressor at Low Flow Rate Conditions

  • YANG Zimu ,
  • JIANG Hongsheng ,
  • ZHUGE Weilin ,
  • CAI Ruikai ,
  • YANG Mingyang ,
  • CHEN Haoxiang ,
  • QIAN Yuping ,
  • ZHANG Yangjun
Expand
  • 1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2024-01-16

Supported by

This research was supported by the National Key Research and Development Program of China (No. 2018YFB1501004).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

摘要

超临界二氧化碳(S-CO2)布雷顿循环具有高效、紧凑等优点,在能源动力领域具有广阔的发展前景。离心压缩机是S-CO2布雷顿循环的核心部件之一。为提高循环效率,一般将离心压缩机进口条件设计为二氧化碳临界点附近。当离心压缩机进口温度接近临界点时,工质密度急剧增加,导致体积流量大幅下降、效率降低。本文研究了小流量工况下S-CO2压缩机的流动损失机理。对不同入口温度和不同质量流量条件下的S-CO2压缩机进行了计算流体力学(CFD)仿真分析。S-CO2压缩机在小体积流量工况的流动损失机理与空气压缩机不同,流动损失主要发生在靠近叶片尾缘吸力面附近,与主叶片吸力面侧产生的逆时针旋涡有关。该旋涡由叶轮通道下游区域的流动分离引起。流动分离的形成机制为:S-CO2压缩机工质密度大,科里奥利力对工质流动的影响比粘性力和惯性力大得多;小流量工况下,在科里奥利力的作用下,叶轮流道中的相对流速偏向圆周方向,导致径向分量较低,在主叶片尾缘附近吸力面逆压梯度的作用下发生严重流动分离。

本文引用格式

YANG Zimu , JIANG Hongsheng , ZHUGE Weilin , CAI Ruikai , YANG Mingyang , CHEN Haoxiang , QIAN Yuping , ZHANG Yangjun . Flow Loss Mechanism in a Supercritical Carbon Dioxide Centrifugal Compressor at Low Flow Rate Conditions[J]. 热科学学报, 2024 , 33(1) : 114 -125 . DOI: 10.1007/s11630-023-1857-0

Abstract

With the advantages of high efficiency and compact structure, supercritical carbon dioxide (sCO2) Brayton cycles have bright prospects for development in energy conversion field. As one of the core components of the power cycle, the centrifugal compressor tends to operate near the critical point (304.13 K, 7.3773 MPa). Normally, the compressor efficiency increases as the inlet temperature decreases. When the inlet temperature is close to the critical point, the density increases sharply as the temperature decreases, which results in quickly decreasing of volume flow rate and efficiency reducing. The flow loss mechanism of the sCO2 compressor operating at low flow rate is studied in this paper. Computational fluid dynamics (CFD) simulations for sCO2 compressor were carried out at various inlet temperatures and various mass flow rates. When the sCO2 compressor operates at low volume flow rate, the flow loss is generated mainly on the suction side near the trailing edge of the blade. The flow loss is related to the counterclockwise vortexes generated on the suction side of the main blade. The vortexes are caused by the flow separation in the downstream region of the impeller passage, which is different from air compressors operating at low flow rates. The reason for this flow separation is that the effect of Coriolis force is especially severe for the sCO2 fluid, compared to the viscous force and inertial force. At lower flow rates, with the stronger effect of Coriolis force, the direction of relative flow velocity deviates from the direction of radius, resulting in its lower radial component. The lower radial relative flow velocity leads to severe flow separation on the suction side near the trailing edge of the main blade.

参考文献

[1] Klaus B., Richard D., Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles. Cambridge, Woodhead Publishing, 2017.
[2] Ahn Y., Bae S., Kim M., Cho S., Baik S., Lee J., Cha J., Review of supercritical CO2 power cycle technology and current status of research and development. Nuclear Engineering and Technology, 2015, 47(6): 647–661.
[3] White M., Bianchi G., Chai L., Tassou S., Sayma A., Review of supercritical CO2 technologies and systems for power generation. Applied Thermal Engineering, 2021, 185: 116447.
[4] Oh B., Jeong Y., Cho S., Lee J., Controllability of S-CO2 power system coupled small modular reactor with improved compressor design. Applied Thermal Engineering, 2021, 192: 116957.
[5] Yang J., Yang Z., Duan Y., A review on integrated design and off-design operation of solar power tower system with S-CO2 Brayton cycle. Energy, 2022, 246: 123348.
[6] Manjunath K., Sharma O., Tyagi S., Kaushik S., Thermodynamic analysis of a supercritical/transcritical CO2 based waste heat recovery cycle for shipboard power and cooling applications. Energy Conversion and Management, 2018, 155: 262–275.
[7] Schöffer S.I., Klein S., Aravind P.V., Pecnik R., A solid oxide fuel cell-supercritical carbon dioxide Brayton cycle hybrid system. Applied Energy, 2021, 283: 115748.
[8] Cheng W., Huang W., Nian Y., Global parameter optimization and criterion formula of supercritical carbon dioxide Brayton cycle with recompression. Energy Conversion and Management, 2017, 150: 669–677.
[9] Jeong W., Lee J., Jeong Y., Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR. Nuclear Engineering and Design, 2011, 241(6): 2128–2137.
[10] Ameli A., Afzalifar A., Turunen-Saaresti T., Backman J., Effects of real gas model accuracy and operating conditions on supercritical CO2 compressor performance and flow field. Journal of Engineering for Gas Turbines and Power, 2018, 140(6): 062603.
[11] Steven A W., Ross F., Milton E., Gary E., Paul S., Operation and analysis of a supercritical CO2 Brayton cycle. Sandia National Laboratory, 2010.
[12] Utamura M., Fukuda T., Aritomi M., Aerodynamic characteristics of a centrifugal compressor working in supercritical carbon dioxide. Energy Procedia, 2012, 14: 1149–1155.
[13] Allison T., Smith N., Pelton R., Wilkes J., Jung S., Experimental validation of a wide-range centrifugal compressor stage for supercritical CO2 power cycles. Journal of Engineering for Gas Turbines and Power, 2019, 141(6): 061011.
[14] Son S., Cho S., Lee J., Experimental investigation on performance degradation of a supercritical CO2 radial compressor by foreign object damage. Applied Thermal Engineering, 2021, 183: 116229.
[15] Hacks A., Abd E., Ren H., Schuster S., Brillert., Experimental data of supercritical carbon dioxide (sCO2) compressor at various fluid states. Journal of Engineering for Gas Turbines and Power, 2022, 144(4): 041012.
[16] Cho S., Son S., Lee J., Lee S., Jeong Y., Oh B., Lee J., Optimum loss models for performance prediction of supercritical CO2 centrifugal compressor. Applied Thermal Engineering, 2021, 184: 116255.
[17] Chen H., Zhuge W., Zhang Y., Liu H., Effect of compressor inlet condition on supercritical carbon dioxide compressor performance. ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Arizona, USA, 2019, 6: V009T38A012. 
DOI: 10.1115/gt2019-90647.
[18] Baltadjiev N.D., Lettieri C., Spakovszky Z.S., An investigation of real gas effects in supercritical CO2 centrifugal compressors. Journal of Turbomachinery, 2015, 137(9): 091003.
[19] Gou J., Zhang K., Ma C., Huang C., Chen K., Li B., Numerical investigation on property effects in a low speed supercritical carbon dioxide centrifugal compressor. IOP Conference Series, Earth and Environmental Science, 2019, 354(1): 012076.
[20] Hosangadi A., Liu Z., Weathers T., Ahuja, V., Busby J., Modeling multiphase effects in CO2 compressors at subcritical inlet conditions. Journal of Engineering for Gas Turbines and Power, 2019, 141(8): 081005.
[21] Bao W., Yang C., Wang W., Du Y., Fu L., Effect of inlet temperature on flow behavior and performance characteristics of supercritical carbon dioxide compressor. Nuclear Engineering and Design, 2021, 380: 111296.
[22] Lettieri C., Baltadjiev N., Casey M., Spakovszky Z., Low-flow-coefficient centrifugal compressor design for supercritical CO2. Journal of Turbomachinery, 2014, 136(8): 081008.
[23] Otero R., Patel A., Diez S., Pecnik R., Turbulence modelling for flows with strong variations in thermo-physical properties. International Journal of Heat and Fluid Flow, 2018, 73: 114–123.
[24] Span R., Wagner W., A new equation of state for carbon dioxide covering the fluid Region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509–1596.
[25] Shao W., Yang J., Wang X., Ma Z., Accuracy study and stability control of a property-table-based CFD strategy for modeling SCO2 compressors working near the critical point of the fluid. Applied Thermal Engineering, 2021, 183: 116222.
[26] Liu C., Numerical simulation of internal flow field in supercritical carbon dioxide centrifugal compressor. North China Electric Power University, Beijing, China, 2021.
[27] Pecnik R., Rinaldi E., Colonna P., Computational fluid dynamics of a radial compressor operating with supercritical CO2. Journal of Engineering for Gas Turbines and Power, 2012, 134(12): 122301.
[28] Rinaldi E., Pecnik R., Colonna P., Computational fluid dynamic simulation of a supercritical CO2 compressor performance map. Journal of Engineering for Gas Turbines and Power, 2015, 137(7): 072602.
[29] Hu C., Geng K., Yang C., Zhou M., Chen H., Thermodynamics investigation and spike-stall identification based on energy loss of centrifugal compressor. International Journal of Heat and Mass Transfer, 2021, 166: 120693.
[30] Oh J., Buckley C., Agrawal G., Numerical study on the effects of blade lean on high-pressure centrifugal impeller performance. ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, 2011.
文章导航

/