燃烧和反应

Effect of Complex Parameters of Porous Media on Desalination Performance in Air-Gap Diffusion Distillation Based on Multiple Regression Analysis

  • CHEN Lele ,
  • WANG Ping ,
  • ZHANG Xuan ,
  • QIU Qinggang
展开
  • Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China

网络出版日期: 2023-12-04

基金资助

This project is financially supported by the National Natural Science Foundation of China (No. 52176060, No. 51876023) and Dalian University of Technology 2021 Large-scale Instrument and Equipment Open Fund (No. DUTKFJJ2021041, No. DUTKFJJ2021044).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Effect of Complex Parameters of Porous Media on Desalination Performance in Air-Gap Diffusion Distillation Based on Multiple Regression Analysis

  • CHEN Lele ,
  • WANG Ping ,
  • ZHANG Xuan ,
  • QIU Qinggang
Expand
  • Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China

Online published: 2023-12-04

Supported by

This project is financially supported by the National Natural Science Foundation of China (No. 52176060, No. 51876023) and Dalian University of Technology 2021 Large-scale Instrument and Equipment Open Fund (No. DUTKFJJ2021041, No. DUTKFJJ2021044).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

气隙扩散蒸馏(AGDD)是一项旨在解决偏远地区居民安全饮水问题的新技术,它采用超亲水性多孔介质作为热流道和蒸发表面。在实验中发现,多孔介质的参数对AGDD的脱盐(蒸发)效率有显著的影响。尽管多孔介质被广泛用作蒸发组件,但影响其蒸发效率的因素尚不完全清楚。超亲水性多孔介质中的蒸发过程很少被讨论。本文基于AGDD进行了大量的实验。统计方法的引入解决了实验无法区分多孔介质复杂参数对蒸发效率具体影响的问题。采用逐步回归分析对自变量进行降维,构建回归方程(决定系数R2达到81.3-96.8%)。基于多孔介质参数建立蒸发通量关联式和无量纲传质关联式。我们发现超亲水多孔介质的表面蒸发可分为三个阶段:扩散蒸发、毛细管蒸发和热蒸发。这三个阶段的蒸发效率由蒸汽扩散阻力、毛细力和热量供应控制。在低饱和度下,蒸发效率受限于蒸汽扩散过程的阻力,多孔介质的蒸发效率主要受孔径、比表面积、孔隙率和特征长度的影响。在高饱和度下,蒸发效率主要受渗透率的影响。小厚度和高亲水性也可以提高蒸发效率。

本文引用格式

CHEN Lele , WANG Ping , ZHANG Xuan , QIU Qinggang . Effect of Complex Parameters of Porous Media on Desalination Performance in Air-Gap Diffusion Distillation Based on Multiple Regression Analysis[J]. 热科学学报, 2022 , 31(6) : 2329 -2345 . DOI: 10.1007/s11630-022-1713-7

Abstract

Air-Gap Diffusion Distillation (AGDD) is a new technology aiming at solving the problem of the safety of drinking water for residents in remote areas that uses a super hydrophilic porous medium as the hot channel and evaporation surface. In the experiment, it was found that the parameters of porous media have a significant influence on the desalination (evaporation) efficiency of AGDD. Although porous media are widely used as evaporation components, the factors affecting their evaporation efficiency are not fully understood. The evaporation process in super hydrophilic porous media is rarely discussed. A large number of experiments have been carried out based on AGDD. The introduction of statistical methods solves the problem that experiments cannot distinguish the contribution of complex parameters of porous media to evaporation efficiency. Stepwise regression analysis is used to reduce the dimensionality of the independent variables and construct regression equations (coefficient of determination R2 reached 81.3%–96.8%). Evaporation flux correlations and dimensionless mass transfer correlations are established based on porous media parameters. We found that the surface evaporation of super hydrophilic porous media can be divided into three stages: diffusion evaporation, capillary evaporation, and thermal evaporation. The evaporation efficiency of these three stages is controlled by the vapor diffusion process resistance, capillary force, and energy supply. At low saturation, evaporation efficiency is limited by the resistance of the vapor diffusion process. The evaporation efficiency of the porous media is affected predominantly by the pore size, the specific surface area, porosity and the characteristic length. At high saturation, the evaporation efficiency becomes influenced primarily by the permeability. A small thickness and a high hydrophilicity also improve the evaporation efficiency.

参考文献

[1] Xu S., Xu L., Wu X., Wang P., Jin D., Hu J., Zhang S., Leng Q., Wu D., Air-gap diffusion distillation: Theory and experiment. Desalination, 2019, 467: 64–78. DOI: 10.1016/j.desal.2019.05.014.
[2] Wang C., Wang J., Li Z., Xu K., Lei T., Wang W., Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency. Journal of Materials Chemistry A, 2020, 19: 9528–9535. DOI: 10.1039/D0TA01439G.
[3] Li C., Peterson G.P., Evaporation/boiling in thin capillary wicks (II)—Effects of volumetric porosity and mesh size. Journal of Heat Transfer, 2006, 128(12): 1320–1328. DOI: 10.1115/1.2349508.
[4] Li C., Peterson G.P., Wang Y., Evaporation/boiling in thin capillary wicks (l)—Wick thickness effects. Journal of Heat Transfer, 2006, 128(12): 1312–1319. DOI: 10.1115/1.2349507.
[5] Zhang Y., Chen W., Experimental study on jet impingement boiling heat transfer in brass beads packed porous layer. Journal of Thermal Science, 2020, 29(3): 718–729. DOI: 10.1007/s11630-019-1148-y.
[6] Liu Q., Zhang J., Zhong Q., Experimental studies on condensation heat transfer of the moist air outside the horizontal circular pipe with a porous layer. Journal of Thermal Science, 1999, 8(2): 108–113. DOI: 10.1007/s11630-999-0032-6.
[7] Shokri N., Lehmann P., Or D., Characteristics of evaporation from partially wettable porous media: Evaporation from wettable porous media. Water Resources Research, 2009, 45(2): W02415. DOI: 10.1029/2008WR007185.
[8] Bachmann J., Horton R., van der Ploeg R.R., Isothermal and nonisothermal evaporation from four sandy soils of different water repellency. Soil Science Society of America Journal, 2001, 65(6): 1599–1607. DOI: 10.2136/sssaj2001.1599.
[9] Shahidzadeh-Bonn N., Azouni A., Coussot P., Effect of wetting properties on the kinetics of drying of porous media. Journal of Physics: Condensed Matter, 2007, 19(11): 112101. DOI: 10.1088/0953-8984/19/11/112101.
[10] Shokri N., Lehmann P., Or D., Effects of hydrophobic layers on evaporation from porous media. Geophysical Research Letters, 2008, 35(19): L19407. DOI: 10.1029/2008GL035230.
[11] Chapuis O., Prat M., Influence of wettability conditions on slow evaporation in two-dimensional porous media. Physical Review E, 2007, 75(4): 046311. DOI: 10.1103/PhysRevE.75.046311.
[12] Prat M., On the influence of pore shape, contact angle and film flows on drying of capillary porous media. International Journal of Heat and Mass Transfer, 2007, 50(7–8): 1455–1468. DOI: 10.1016/j.ijheatmasstransfer.2006.09.001.
[13] Wang P., Yu B., Xu S., Xu L., Zhang S., Li L., Study on heat and mass transfer characteristics of AGDD. Desalination and Water Treatment, 2019, 151: 47–55. DOI: 10.5004/dwt.2019.23732.
[14] Hanlon M.A., Ma H.B., Evaporation heat transfer in sintered porous media. Journal of Heat Transfer, 2003, 125(4): 644–652. DOI: 10.1115/1.1560145.
[15] Tao P., Ni G., Song C., Shang W., Wu J., Zhu J., Chen G., Deng T., Solar-driven interfacial evaporation. Nature Energy, 2018, 3(12): 1031–1041. DOI: 10.1038/s41560-018-0260-7.
[16] Yu S., Zhang Y., Duan H., Liu Y., Quan X., Tao P., Shang W., Wu J., Song C., Deng T., The impact of surface chemistry on the performance of localized solar-driven evaporation system. Scientific Reports, 2015, 5(1): 13600. DOI: 10.1038/srep13600.
[17] Zhang L., Pan Z., Zhang Y., Meng Q., Impact of climatic factors on evaporative cooling of porous building materials. Energy and Buildings, 2018, 173: 601–612. DOI: 10.1016/j.enbuild.2018.05.038.
[18] Zhang L., Liu X., Meng Q., Zhang Y., Experimental study on the impact of mass moisture content on the evaporative cooling effect of porous face brick. Energy Efficiency, 2016, 9(2): 511–523. DOI: 10.1007/s12053-015-9377-8.
[19] Rashidi S., Kashefi M.H., Kim K.C., Samimi-Abianeh O., Potentials of porous materials for energy management in heat exchangers – A comprehensive review. Applied Energy, 2019, 243: 206–232. DOI: 10.1016/j.apenergy.2019.03.200.
[20] Singh S.K., Khandekar S., Pratap D., Ramakrishna S.A., Wetting dynamics and evaporation of sessile droplets on nano-porous alumina surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 432: 71–81. DOI: 10.1016/j.colsurfa.2013.04.070.
[21] Holman R.K., Cima M.J., Uhland S.A., Sachs E., Spreading and infiltration of inkjet-printed polymer solution droplets on a porous substrate. Journal of Colloid and Interface Science, 2002, 249(2): 432–440. DOI: 10.1006/jcis.2002.8225.
[22] Yeu Y.L., Tan H.H.J., Gorin A., Vakhguelt A., Experimental study of the rate of evaporation from porous media of different matrices. Defect and Diffusion Forum, 2017, 379: 171–180. DOI: 10.4028/www.scientific.net/DDF.379.171.
[23] Mahgoub S.E., Forced convection heat transfer over a flat plate in a porous medium. Ain Shams Engineering Journal, 2013, 4(4): 605–613. DOI: 10.1016/j.asej.2013.01.002.
[24] Lv J., Xu H., Zhu M., Dai Y., Liu H., Li Z., The performance and model of porous materials in the indirect evaporative cooling system: A review. Journal of Building Engineering, 2021, 41: 102741. DOI: 10.1016/j.jobe.2021.102741.
[25] Ding T., Zhou Y., Ong W.L., Ho G.W., Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Materials Today, 2021, 42: 178–191. DOI: 10.1016/j.mattod.2020.10.022.
[26] Dao V.-D., Vu N.H., Yun S., Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy, 2020, 68: 104324. DOI: 10.1016/j.nanoen.2019.104324.
[27] Gu Y., Bao Z., Lin Y., Qin Z., Lu J., Wang H., The porosity and permeability prediction methods for carbonate reservoirs with extremely limited logging data: Stepwise regression vs. N-way analysis of variance. Journal of Natural Gas Science and Engineering, 2017, 42: 99–119. DOI: 10.1016/j.jngse.2017.03.010.
[28] Shuai C., Chen X., Wu Y., Tan Y., Zhang Y., Shen L., Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. Journal of Cleaner Production, 2018, 175: 612–623. DOI: 10.1016/j.jclepro.2017.12.097.
[29] Zhang Q., Liu J., Yu X., Chen L., Scale effects on runoff and a decomposition analysis of the main driving factors in Haihe Basin mountainous area. Science of the Total Environment, 2019, 690: 1089–1099. DOI: 10.1016/j.scitotenv.2019.06.540.
[30] Pandey J., Verma R.K., Singh S., Trace element accumulation potential in lemongrass varieties (Cymbopogon species) and prediction through regression model equations followed by path analysis: a field study. Chemosphere, 2020, 257: 127102. DOI: 10.1016/j.chemosphere.2020.127102.
[31] Tao Q., Bai M., Han Y., Wang Y., Optimizing between-row and within-row spacing for Artemisia sphaerocephala (Asteraceae) seed production. Industrial Crops and Products, 2019, 139: 111490. DOI: 10.1016/j.indcrop.2019.111490.
[32] Yang D., Tang J., Zhou W., Wen Y., Correlation between surface roughness parameters and contact stress of gear. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(3): 551–563. DOI: 10.1177/1350650120928661.
[33] Huo J., Liu C., Yu X., Jia G., Chen L., Effects of watershed char and climate variables on annual runoff in different climatic zones in China. Science of the Total Environment, 2021, 754: 142157. DOI: 10.1016/j.scitotenv.2020.142157.
[34] Hasanzadeh R., Azdast T., Doniavi A., Thermal conductivity of low-density polyethylene foams Part II: Deep investigation using response surface methodology. Journal of Thermal Science, 2020, 29(1): 159–168. DOI: 10.1007/s11630-019-1240-3.
[35] Tong L., Zhang P., Yin S., Liu Y., Wang L., Ding Y., Experimental study on factors that influence the diameter of dry granulated particles. Journal of Thermal Science, 2016, 25(6): 571–580. DOI: 10.1007/s11630-016-0900-9.
[36] Xu L., Xu S., Wu X., Wang P., Jin D., Hu J., Li L., Chen L., Leng Q., Wu D., Heat and mass transfer evaluation of air-gap diffusion distillation by ε-NTU method. Desalination, 2020, 478: 114281. DOI: 10.1016/j.desal.2019.114281.
[37] Webb P.A., AutoPore_IV_9500_Operator_s_Manual _v1.09, Micromeritics Instrument Corparation, Norcross, 2001.
[38] Crowley M.M., Schroeder B., Fredersdorf A., Obara S., Talarico M., Kucera S., McGinity J.W., Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. International Journal of Pharmaceutics, 2004, 269(2): 509–522. DOI: 10.1016/j.ijpharm.2003.09.037.
[39] Webb P.A., An introduction to the physical characterization of materials by mercury intrusion porosimetry with emphasis on reduction and presentation of experimental data. Micromeritics Instrument Corparation, Norcross, 2001.
[40] Chen L., Qiu Q., Wang P., Zhang X., Zhang Z., Visualization study on preferential flow in highly saturated and super hydrophilic porous media by combining dye tracking and infrared imaging. Journal of Hydrology, 2022, 612: 128077. DOI: 10.1016/j.jhydrol.2022.128077.
[41] He Y., Xu J., Wang H., Wu Y., Generalized models for prediction of pentachlorophenol dissipation dynamics in soils. Environmental Pollution, 2007, 147(2): 343–349. DOI: 10.1016/j.envpol.2006.05.026.
[42] Zhang B., Xu D., Liu Y., Li F., Cai J., Du L., Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China. Agricultural and Forest Meteorology, 2016, 216: 1–12. DOI: 10.1016/j.agrformet.2015.09.015.
[43] Wang X., Li L., Ding Y., Xu J., Wang Y., Zhu Y., Wang X., Cai H., Adaptation of winter wheat varieties and irrigation patterns under future climate change conditions in Northern China. Agricultural Water Management, 2021, 243: 106409. DOI: 10.1016/j.agwat.2020.106409.
[44] Qiu R., Liu C., Cui N., Wu Y., Wang Z., Li G., Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system. Agricultural Water Management, 2019, 224: 105755. DOI: 10.1016/j.agwat.2019.105755.
[45] Chen Y., Li H., Ding H., Dong Z., Niu D., Li J., Heritability estimation and path analysis for growth traits of the razor clam Sinonovacula constricta under high salinity. Aquaculture, 2021, 545: 737175. DOI: 10.1016/j.aquaculture.2021.737175.
[46] Li H., Chen Y., Zhang J., Xin G., Evaporation in porous media with different porosity. CIESC Journal, 2017, 68(9): 3380. DOI: 10.11949/j.issn.0438-1157.20170134.
[47] Xu P., Ma X., Zhao X., Fancey K.S., Experimental investigation on performance of fabrics for indirect evaporative cooling applications. Building and Environment, 2016, 110: 104–114. DOI: 10.1016/j.buildenv.2016.10.003.
[48] Maurya R.M., Shrivastava D.N., Shrivastava V., Performance evaluation of alternative evaporative cooling media. International Journal of Scientific & Engineering Research, 2014, 5(10): 676–684.
[49] Adegbule A.O., Kibbey T.C.G., Exploring the impact of long-term evaporation on the relationship between capillary pressure and water saturation in unsaturated porous media. Journal of Hydrology, 2020, 582: 124557. DOI: 10.1016/j.jhydrol.2020.124557.
[50] Songok J., Bousfield D., Ridgway C., Gane P., Toivakka M., Drying of porous coating: influence of coating composition. Industrial & Engineering Chemistry Research, 2012, 51(42): 13680–13685. DOI: 10.1021/ie301624e.
[51] Guo H., Ji X., Xu J., Research and development of loop heat pipe—A review. Frontiers in Heat and Mass Transfer, 2020, 14: 14. DOI: 10.5098/hmt.14.14.
[52] Zhou X., Zhao F., Guo Y., Zhang Y., Yu G., A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy & Environmental Science, 2018, 11(1): 1985–1992. DOI: 10.1039/C8EE00567B.
[53] Gurreri L., Tamburini A., Cipollina A., Micale G., Ciofalo M., Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study. Journal of Membrane Science, 2016, 497: 300–317. DOI: 10.1016/j.memsci.2015.09.006.
[54] Dudchenko A.V., Hardikar M., Xin R., Joshi S., Wang R., Sharma N., Mauter M.S., Impact of module design on heat transfer in membrane distillation. Journal of Membrane Science, 2020, 601: 117898. DOI: 10.1016/j.memsci.2020.117898.
[55] Guan G., Yao C., Lu S., Jiang Y., Yu H., Yang X., Sustainable operation of membrane distillation for hypersaline applications: Roles of brine salinity, membrane permeability and hydrodynamics. Desalination, 2018, 445: 123–137. DOI: 10.1016/j.desal.2018.07.031.
[56] Kang W., Tian J., Lai Y., Xu S., Gao C., Hong W., Zhou Y., Pei L., He C., Occurrence and controls of preferential flow in the upper stream of the Heihe River Basin, Northwest China. Journal of Hydrology, 2022, 607: 127528. DOI: 10.1016/j.jhydrol.2022.127528.
[57] Nimmo J.R., The processes of preferential flow in the unsaturated zone. Soil Science Society of America Journal, 2021, 85(1): 1–27. DOI: 10.1002/saj2.20143.
文章导航

/