Theoretical Analyses and Design of a 4 K Gas-Coupled Multi-Bypass Stirling-Type Pulse Tube Cryocooler

  • LIU Xuming ,
  • YANG Biao ,
  • CHEN Liubiao ,
  • WANG Junjie ,
  • ZHOU Yuan
展开
  • 1. Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
    2. University of the Chinese Academy of Sciences, Beijing 100049, China

网络出版日期: 2023-12-04

基金资助

This work was supported by the National Key R&D Program of China (Grant No. 2018Y FB0504603), the National Natural Science Foundation of China (Grant No. U1831203), the Strategic Pilot Projects in Space Science of China (Grant No. XDA15010400), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC028), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2019030).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Theoretical Analyses and Design of a 4 K Gas-Coupled Multi-Bypass Stirling-Type Pulse Tube Cryocooler

  • LIU Xuming ,
  • YANG Biao ,
  • CHEN Liubiao ,
  • WANG Junjie ,
  • ZHOU Yuan
Expand
  • 1. Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
    2. University of the Chinese Academy of Sciences, Beijing 100049, China

Online published: 2023-12-04

Supported by

This work was supported by the National Key R&D Program of China (Grant No. 2018Y FB0504603), the National Natural Science Foundation of China (Grant No. U1831203), the Strategic Pilot Projects in Space Science of China (Grant No. XDA15010400), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC028), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2019030).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

气耦合型斯特林脉冲管制冷机具有紧凑结构和简易流程,却很难获取更低的制冷温度。为了突破液氦温度,本文对一台4K气耦合型斯特林脉冲管制冷机开展了研究。主要基于制冷机专业软件SAGE,模拟分析了在系统中使用多路旁通流程对制冷机宏观制冷性能和内在工作特性的影响。计算结果表明,多路旁通具有类似多级气耦合结构的作用,可以通过增大高温段脉冲管内的声功和焓流,产生制冷效应来对低温段的回热器和脉冲管进行预冷。两个多路旁通结构的联合使用可以进一步改善系统的制冷性能,但由于低温段工质气体质量流量的减小和相位分布的急剧恶化,很难真正达到多级气耦合脉冲管制冷机一样的制冷性能。基于分析结果,我们研制的实验样机获得了4.4K的无负荷温度,表明使用气耦合型斯特林脉冲管制冷机获取4K以下制冷温度的可能。

本文引用格式

LIU Xuming , YANG Biao , CHEN Liubiao , WANG Junjie , ZHOU Yuan . Theoretical Analyses and Design of a 4 K Gas-Coupled Multi-Bypass Stirling-Type Pulse Tube Cryocooler[J]. 热科学学报, 2022 , 31(6) : 2077 -2087 . DOI: 10.1007/s11630-022-1684-8

Abstract

Gas-coupled Stirling-type pulse tube cryocooler (SPTC) is currently the most compact and simplest configuration among all types of cryocoolers, but it is challenging to achieve a very low temperature. This paper investigates a gas-coupled SPTC which is capable of directly achieving a temperature of around 4 K. Theoretical analyses were performed based on SAGE to study the effects of employing one or more multi-bypass structures on apparent cooling performance, and internal working parameters. The simulation results indicate that the function of the multi-bypass is similar to that of a multi-stage gas-coupled structure, producing a pre-cooling effect on the lower-temperature section by increasing the acoustic power and the enthalpy flow in the pulse tube of the higher-temperature section. The cooperation of two multi-bypass structures can promote a higher enhancement of the cooling performance, but it is difficult to achieve the same cooling performance of a completely multi-stage gas-coupled SPTC due to weak phase-shifting capability and excessive reduction of the mass flow. Based on the model, the developed prototype has achieved a no-load temperature of 4.4 K, which shows the great potential of using a gas-coupled SPTC to obtain a cooling temperature below 4 K.

参考文献

[1] Radebaugh R., Cryocoolers: The state of the art and recent developments. Journal of Physics: Condensed Matter, 2009, 21(16): 164219.
[2] Radebaugh R., Thermodynamics of regenerative refrigerators. Generation of Low Temperature and Its Applications, Shonan Research Center, Kamakura, Japan, 2003, pp. 1–20. 
[3] Wilson K.B, Gedeon D.R., Status of pulse tube cryocooler development at Sunpower. Cryocoolers, 2005, 13: 31–40. 
[4] Wang B., Gan Z., A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications. Progress in Aerospace Sciences, 2013, 61: 43–70. 
[5] Dang H., Development of high performance moving-coil linear compressors for space Stirling-type pulse tube cryocoolers. Cryogenics, 2015, 68: 1–18. 
[6] Bradley P.E, Radebaugh R., Garaway I., et al., Progress in the development and performance of a high frequency 4 K Stirling-type pulse tube cryocooler. Cryocoolers, 2011, 16: 27–33.
[7] Collaudin B., Rando N., Cryogenics in space: A review of the missions and of the technologies. Cryogenics, 2000, 40(12): 797–819.
[8] Olson J., Nast T.C., Evtimov B., et al., Development of a 10 K pulse tube cryocooler for space applications. Cryocooler, 2003, 12: 241–246. DOI: 10.1007/0-306-47919-2_33.
[9] Narasaki K., Tsunematsu S., Kanao K., et al., Mechanical coolers operating below 4.5 K for space application. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 559(2): 644–647.
[10] Liu X., Chen L., Wu X., et al., Attaining the liquid helium temperature with a compact pulse tube cryocooler for space applications. Science China Technological Sciences, 2020, 63(3): 434–439.
[11] Dang H., Zha R., Tan J., et al., Investigations on a 3.3 K four-stage Stirling-type pulse tube cryocooler. Part A: Theoretical analyses and modelling. Cryogenics, 2020, 105: 103014.
[12] Dang H., Zha R., Tan J., et al., Investigations on a 3.3 K four-stage Stirling-type pulse tube cryocooler. Part B: Experimental verifications. Cryogenics, 2020, 105: 103015. 
[13] Wu X., Chen L., Liu X., et al., An 80 mW/8 K high-frequency pulse tube refrigerator driven by only one linear compressor. Cryogenics, 2019, 101: 7–11.
[14] Chen L., Wu X., Liu X., et al., Numerical and experimental study on the characteristics of 4 K gas-coupled Stirling-type pulse tube cryocooler. International Journal of Refrigeration, 2018, 88: 204–210.
[15] Chen L., Wu X., Wang J., et al., Study on a high frequency pulse tube cryocooler capable of achieving temperatures below 4 K by helium-4. Cryogenics, 2018, 94: 103–109.
[16] Gifford W.E., Longsworth R.C., Pulse-tube refrigeration. Journal of Manufacturing Science and Engineering, 1964, 86(3): 264–268. 
[17] Mikulin E.I., Tarasov A.A., Shkrebyonock M.P., Low temperature expansion pulse tubes. Advances in Cryogenic Engineering, 1984, 29: 629–637. 
[18] Radebaugh R., Zimmerman J., Smith D.R., et al., A comparison of three types of pulse tube refrigerators: new method for reaching 60 K. Advances in Cryogenic Engineering, 1986, 31: 779–789. 
[19] Zhu S., Wu P., Chen Z., Double inlet pulse tube refrigerators: an important improvement. Cryogenics, 1990, 30(6): 514–520. 
[20] Tominaga A., Phase controls for pulse tube refrigerator of the third generation. TEION KOGAKU (Journal of Cryogenics and Superconductivity society of Japan), 1992, 27(2): 147–151. 
[21] Kanao K., Watanabe N., Kanazawa Y., A miniature pulse tube refrigerator for temperature below 100 K. Cryogenics, 1990, 30(7–10): 167–170. 
[22] Qiu L., Cao Q., Zhi X., et al., A three-stage Stirling pulse tube cryocooler operating below the critical point of helium-4. Cryogenics, 2011, 51(10): 609–612.
[23] Dang H., Bao D., Zhang T., et al., Theoretical and experimental investigations on the three-stage Stirling-type pulse tube cryocooler using cryogenic phase-shifting approach and mixed regenerator matrices. Cryogenics, 2018, 93: 7–16.
[24] Quan J., Liu Y., Liu D., et al., 4 K high frequency pulse tube cryocooler used for terahertz space application. Chinese Science Bulletin, 2014, 59(27): 3490–3494. 
[25] Hu J., Dai W., Luo E., et al., Numerical simulation of a three-stage Stirling-type pulse tube cryocooler for 4 K operation. Advances in Cryogenic Engineering, 2008, 985(1): 1531–1538. 
[26] Wang K., Dubey S., Choo F.H., et al., Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism. Applied Energy, 2016, 171: 172–183. 
[27] Zhu S., Nogawa M., Pulse tube Stirling machine with warm gas-driven displacer. Cryogenics, 2010, 50(5): 320–330. 
[28] Wang X., Zhang Y., Li H., et al., A high efficiency hybrid Stirling-pulse tube cryocooler. AIP Advanced, 2015, 5(3): 037127. 
[29] Zhu S., Step piston pulse tube refrigerator. Cryogenics, 2014, 64: 63–69. 
[30] Xu J., Hu J., Luo E., et al., Cascade pulse-tube cryocooler using a displacer for efficient work recovery. Cryogenics, 2017, 86: 112–117. 
[31] Cai J., Wang J., Zhu W., et al., Experimental analysis of the multi-bypass principle in pulse tube refrigerators. Cryogenics, 1994, 34(9): 713–715. 
[32] Zhou Q., Chen L., Zhu X., et al., Development of a high-frequency coaxial multi-bypass pulse tube refrigerator below 14 K. Cryogenics, 2015, 67: 28–30.
[33] Pan C., Wang J., Luo K., et al., Numerical and experimental study of VM type pulse tube cryocooler with multi-bypass operating below 4 K. Cryogenics, 2019, 98: 71–79.
[34] Cao Q., Li Z., Luan M., et al., Investigation on precooling effects of 4 K Stirling-type pulse tube cryocoolers. Journal of Thermal Science, 2019, 28(4): 714–726.
[35] Gedeon D., Sage user’s guide: Stirling, pulse-tube and low-t cooler model classes, 2014. 
[36] Hu J., Ren J., Luo E., et al., Study on the inertance tube and double-inlet phase shifting modes in pulse tube refrigerators. Energy Conversion and Management, 2011, 52: 1077–1085. 
[37] Ju Y., Wang C., Zhou Y., Dynamic experimental investigation of a multi-bypass pulse tube refrigerator. Cryogenics, 1997, 37: 357–361. 
[38] Wang Y., Huai X., Heat transfer and entropy generation analysis of an intermediate heat exchanger in ADS. Journal of Thermal Science, 2018, 27(2): 175–183.
[39] Gao W., Yao M., Chen Y., et al., Performance of S-CO2 Brayton cycle and organic Rankine cycle (ORC) combined system considering the diurnal distribution of solar radiation. Journal of Thermal Science, 2019, 28(3): 463–471.
[40] Radebaugh R., Huang Y., O’Gallagher A., et al., Calculated regenerator performance at 4 K with helium-4 and helium-3. Advances in Cryogenic Engineering 53, Chattanooga, TN, Melville, 2008, 985: 225–234.
文章导航

/