Experimental Testing of Greenhouse-Integrated Vanadium-Titanium Black Ceramic Solar Absorbers

  • DING Ding ,
  • LIU Chunlu ,
  • WANG Qichun ,
  • ZHAO Zhibin ,
  • XU Jianhua ,
  • CAO Shuliang
展开
  • 1. School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
    2. School of Architecture and Built Environment, Deakin University, Geelong, Victoria 3220, Australia
    3. Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan 250014, China
    4. Shandong Lide Innovative Energy Technology Co., Ltd, Ji’nan 251400, China
    5. Shandong Tianhong Arc Board Co., Ltd, Ji’nan 250014, China

网络出版日期: 2023-12-04

基金资助

This work was supported by the National Natural Science Foundation of China (Grant No. 51778350), The Research Center for Australia, Sichuan Province (Grant No. ADLY2021-006), and the Chengdu Key Research Base of Philosophy and Social Science (CCRC2020-4).

版权

This work was supported by the National Natural Science Foundation of China (Grant No. 51778350), The Research Center for Australia, Sichuan Province (Grant No. ADLY2021-006), and the Chengdu Key Research Base of Philosophy and Social Science (CCRC2020-4).

Experimental Testing of Greenhouse-Integrated Vanadium-Titanium Black Ceramic Solar Absorbers

  • DING Ding ,
  • LIU Chunlu ,
  • WANG Qichun ,
  • ZHAO Zhibin ,
  • XU Jianhua ,
  • CAO Shuliang
Expand
  • 1. School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
    2. School of Architecture and Built Environment, Deakin University, Geelong, Victoria 3220, Australia
    3. Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan 250014, China
    4. Shandong Lide Innovative Energy Technology Co., Ltd, Ji’nan 251400, China
    5. Shandong Tianhong Arc Board Co., Ltd, Ji’nan 250014, China

Online published: 2023-12-04

Supported by

This work was supported by the National Natural Science Foundation of China (Grant No. 51778350), The Research Center for Australia, Sichuan Province (Grant No. ADLY2021-006), and the Chengdu Key Research Base of Philosophy and Social Science (CCRC2020-4).

Copyright

This work was supported by the National Natural Science Foundation of China (Grant No. 51778350), The Research Center for Australia, Sichuan Province (Grant No. ADLY2021-006), and the Chengdu Key Research Base of Philosophy and Social Science (CCRC2020-4).

摘要

作为一种太阳能供热解决方案,低成本、长寿命的钒钛黑瓷太阳能集热板已应用于乡村建设。然而,与其高吸收率(0.93-0.97)的优点相对的,是陶瓷材料较高的发射率(约90%)及低导热能力(1.3 W/mK)。如果没有透明盖板,陶瓷集热板的性能将不能满足行业标准。本文提出了一种假设:在农业大棚中使用时,普通陶瓷集热器的透明盖板可直接由大棚的保温薄膜替代。为了验证此假设,笔者进行了实际项目的测试实验。首先,在中国严寒的新疆塔城地区选取了一座传统大棚进行一定的被动式热工性能提升改造。然后,在大棚内部安装了90 m2的陶瓷集热板、地板盘管及水箱,使大棚建筑整体成为了一套完整的太阳能集热放热系统。该系统可以在缓缓提升室内空气温度(0.9-22.4 ℃)的同时迅速提升土壤温度(15.5-31.2 ℃)。在日太阳辐照量为17 MJ/m2的情况下,系统平均日有用得热量为13.8 MJ,平均集热效率为0.81。此外,该项目较短的回报时间(7年)主要得益于陶瓷材料的低成本以及由于构造层次共享所带来的经济节约(集热器的透明盖板、金属框架、额外保温等)。总之,本研究的主要贡献在于证实了在与农业大棚一体化的钒钛黑瓷集热项目中,集热器的透明盖板可以完全由大棚的保温薄膜替代。

本文引用格式

DING Ding , LIU Chunlu , WANG Qichun , ZHAO Zhibin , XU Jianhua , CAO Shuliang . Experimental Testing of Greenhouse-Integrated Vanadium-Titanium Black Ceramic Solar Absorbers[J]. 热科学学报, 2022 , 31(6) : 1891 -1902 . DOI: 10.1007/s11630-022-1571-3

Abstract

As a solution for solar heating, the low-cost and long-life vanadium-titanium black ceramic solar absorbers have been used in rural construction. However, in contrast to its high absorptance (0.93–0.97), ceramic also has high emissivity (approximately 90%) and low thermal conductivity (1.3 W/(m∙K)). Without a glaze covering, ceramic absorbers cannot meet the industrial standard. This paper assumes that glaze covering can be substituted by insulation film in a solar greenhouse. To verify this assumption, field experiments were conducted. First, a traditional greenhouse in the Tacheng Basin, a severely cold area in China, was renovated to improve its passive thermal performance. Then, 90 m2 of ceramic absorbers and floor coils as well as a water tank were installed inside the greenhouse, which made the entire construction act as an integrated solar collector. This heat collection and release system moderately increased the indoor air temperature (0.9°C–22.4°C) and substantially increased the soil temperature (15.5°C–31.2°C). The average daily useful heat gain under a daily solar insolation value of 17 MJ/m2 was 13.8 MJ, and the mean value of the collection efficiency was 0.81. Furthermore, the payback time of the project (7 years) is short, which is principally due to the low cost of ceramic materials and the financial savings of the shared construction components (e.g., transparent cover, metal frame and extra insulation). In conclusion, the main contribution of this study is the verification that it is feasible to replace glaze covering with insulation film in a novel greenhouse-integrated vanadium-titanium black ceramic solar system.

参考文献

[1] Chen L., Yang M., Li J., Bai Y., Li X., Tang W., Yang N., Wang Z., Thermal analysis of a volumetric solar receiver. Journal of Thermal Science, 2019, 28(6): 1176–1185.
[2] Wang R.Z., Zhai X.Q., Development of solar thermal technologies in China. Energy, 2010, 35(11): 4407–4416. DOI: 10.1016/j.energy.2009.04.005.
[3] Colmenar-Santos A., Vale-Vale J., Borge-Diez D., Requena-Pérez R., Solar thermal systems for high rise buildings with high consumption demand: Case study for a 5 star hotel in Sao Paulo, Brazil. Energy and Buildings, 2014, 69: 481–489. 
DOI: 10.1016/j.enbuild.2013.11.036.
[4] Yang Y., Wang Q., Xiu D., Zhao Z., Sun Q., A building integrated solar collector: All-ceramic solar collector. Energy and Buildings, 2013, 62: 15–17. DOI: 10.1016/j.enbuild.2013.03.002.
[5] Wazwaz A., Al-Salaymeh A., Photothermal testing before and after degradation of nickel-pigmented aluminium oxide selective absorber prepared by alternate and reverse periodic plating technique. Energy Conversion and Management, 2013, 65: 770–776. DOI: 10.1016/j.enconman.2012.02.034.
[6] Carlsson B., Möller K., Frei U., Brunold S., Köhl M., Comparison between predicted and actually observed in-service degradation of a nickel pigmented anodized aluminum absorber coating for solar DHW systems. Solar Energy Materials and Solar Cells, 2000, 61(3): 223–238.
[7] Fernández A., Dieste J.A., Low and medium temperature solar thermal collector based in innovative materials and improved heat exchange performance. Energy Conversion and Management, 2013, 75: 118–129.
[8] Zukowski M., Woroniak G., Experimental testing of ceramic solar collectors. Solar Energy, 2017, 146: 532–542. DOI: 10.1016/j.solener.2017.03.022.
[9] Żukowski M., Woroniak G., Piotrowska-Woroniak J., Experimental research and numerical simulations of a ceramic panel used for solar energy conversion. Solar Energy, 2019, 194: 27–36. DOI: 10.1016/j.solener.2019.10.028.
[10] Xu J., Zhang X., Yang Y., Liu B., Zhang Y., Lv X., Wei L., Wang X., Ma L., Wang J., A perspective of all-ceramic solar collectors. Energy and Environment Focus, 2016, 5: 1–6.
[11] Xu J., Yang Y., Cai B., Wang Q., Xiu D., All-ceramic solar collector and all-ceramic solar roof. Journal of the Energy Institute, 2014, 87(1): 43–47. DOI: 10.1016/j.joei.2014.02.005.
[12] Ma R., Ma R., Application of air source heat pump with V-Ti black porcelain solar collector to swimming pool. China Water and Wastewater, 2014, 30(16): 53–57.
[13] Wang C., Ding D., Roundup of solar decathlon China 2013 (in Chinese). Architectural Journal, 2013 (11): 110–114.
[14] Zheng D., Wan D., Yi S., Determining the thermal conductivity of ceramic coatings by relative method. International Journal of Applied Ceramic Technology, 2019, 16(6): 2299–2305. DOI: 10.1111/ijac.13313.
[15] He W., Thermal performance of dual-effect ceramic solar collector and integrated building design (in Chinese). Tianjin University, Tianjin, China, 2014.
[16] Grabowska B., Kasperski J., Modeling of thermal properties of thermal insulation layered with transparent, opaque and reflective film. Journal of Thermal Science, 2018, 27(5): 463–469. DOI: 10.1007/s11630-018-1041-0.
[17] Yi Z., Huang B., Xiao W., Yang L., Qiao Q., Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the western Altaids. Gondwana Research, 2015, 27(2): 862–877.
[18] Aisikaier R., Study on the characteristics of sunshine hours changes in Tacheng Basin in recent 50 years. Meteorological and Environmental Research, 2011, 2(3): 30–32.
[19] Tong X., Sun Z., Sigrimis N., Li T., Energy sustainability performance of a sliding cover solar greenhouse: Solar energy capture aspects. Biosystems Engineering, 2018, 176: 88–102. DOI: 10.1016/j.biosystemseng.2018.10.008.
[20] Heinze J., Gensch S., Weber E., Joshi J., Soil temperature modifies effects of soil biota on plant growth. Journal of Plant Ecology. 2017, 10(5): 808–821. DOI: 10.1093/jpe/rtw097.
[21] Li J., Li L., Wang H., Ferentinos K.P., Li M., Sigrimis N., Proactive energy management of solar greenhouses with risk assessment to enhance smart specialisation in China. Biosystems Engineering, 2017, 158: 10–22. DOI: 10.1016/j.biosystemseng.2017.03.007.
[22] Maughan T.L., Black B.L., Drost D., Critical temperature for sub-lethal cold injury of strawberry leaves. Scientia Horticulturae, 2015, 183: 8–12. DOI: 10.1016/j.scienta.2014.12.001.
[23] Liu Z., Wu D., Li J., Yu H., He B., Optimizing building envelope dimensions for passive solar houses in the Qinghai-Tibetan region: Window to wall ratio and depth of sunspace. Journal of Thermal Science, 2019, 28(6): 1115–1128. DOI: 10.1007/s11630-018-1047-7.
[24] Zhang L., Xu P., Mao J., Tang X., Li Z., Shi J., A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Applied Energy, 2015, 156: 213–222. DOI: 10.1016/j.apenergy.2015.07.036.
[25] Hassanien R.H.E., Li M., Tang Y., The evacuated tube solar collector assisted heat pump for heating greenhouses. Energy and Buildings, 2018, 169: 305–318. DOI: 10.1016/j.enbuild.2018.03.072.
[26] ArcGIS Web Application. https://power.larc.nasa.gov/data-access-viewer, 2020 (accessed on February 16, 2020).
[27] Lu W., Zhang Y., Fang H., Ke X., Yang Q., Modelling and experimental verification of the thermal performance of an active solar heat storage-release system in a Chinese solar greenhouse. Biosystems Engineering, 2017, 160: 12–24. DOI: 10.1016/j.biosystemseng.2017.05.006.
[28] Ntinas G.K., Dannehl D., Schuch I., Rocksch T., Schmidt U., Sustainable greenhouse production with minimised carbon footprint by energy export. Biosystems Engineering, 2020, 189: 164–178. DOI: 10.1016/j.biosystemseng.2019.11.012.
[29] Ding D., Mechanism and optimization design of Vi-Ti black ceramic solar collecting technologies utilized in rural residence (in Chinese). Shandong Jianzhu University, Ji’nan, China, 2018.
[30] Expansion Bolt (JB/ZQ 4763) (in Chinese). Standards of the People’s Republic of China, Beijing, China, 2006.
[31] Fang H., Yang Q., Zhang Y., Sun W., Lu W., Tong Y., Liang H., Performance of a solar heat collection and release system for improving night temperature in a Chinese Solar Greenhouse. Applied Engineering in Agriculture, 2015, 31(2): 283–289. DOI: 10.13031/aea.31.10817.
[32] Zhang Z., Wang Y., Selection and installation of solar centralized hot water system (in Chinese). Standards of the People’s Republic of China, Beijing, China, 2015.
[33] Huang C., Qin N., Sun L., Yu M., Hu W., Qi Z., Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress. International Journal of Molecular Sciences, 2018, 19(1913): 1–13. DOI: 10.3390/ijms19071913.
[34] WheatA. http://www.xiaomaiya.cc/. 2020 (Accessed on March 1, 2022)
[35] Ceylan İ., Ali I.H.G., Ergün A., Gürel A.E., Acar B., İslam N., A new hybrid system design for thermal energy storage. Journal of Thermal Science, 2020, 29(5): 1300–1308. DOI: 10.1007/s11630-020-1292-4.
[36] Liu J., Analysis of thermal performance for a new-type flat-plate collector of black ceramic. Journal of Gansu Science, 1990, 2(4): 12–18. (in Chinese)
[37] Xiu D., Cao S., Xu J., Cai B., Wang Q., Yang Y., Application of ceramic solar plate heating system. Shandong Science, 2014, 26(3): 72–77. (in Chinese)
[38] Sun X., Sun X., Li X., Wang Z., He J., Wang B., Performance and building integration of all-ceramic solar collectors. Energy and Buildings, 2014, 75: 176–180.
[39] Ren C., Ceramic collection hot plate solar collector performance analysis. Hebei University of Engineering, Handan, China, 2013. (in Chinese)
[40] Yan J., Qiao J., Application of ceramic solar water heating system in the alpine region. Journal of Qinghai University (Natural Science Edition), 2014, 32(6): 34–37. (in Chinese)
[41] Ma R., Ma D., Long E., Experimental study on the dynamic thermal performance of V-Ti black ceramic solar collector under multiple factors. Solar Energy, 2020, 201: 615–620. DOI: 10.1016/j.solener.2020.03.045.
[42] Sakhaei S.A., Valipour M.S., Performance enhancement analysis of the flat plate collectors: A comprehensive review. Renewable and Sustainable Energy Reviews, 2019, 102: 186–204. DOI: 10.1016/j.rser.2018.11.014.
[43] Zhang H., Shu H., A comprehensive evaluation on energy, economic and environmental performance of the Trombe Wall during the heating season. Journal of Thermal Science, 2019, 28(6): 1141–1149. DOI: 10.1007/s11630-019-1176-7.
[44] Zhang C., Sun J., Lubell M., Qiu L., Kang K., Design and simulation of a novel hybrid solar-biomass energy supply system in northwest China. Journal of Cleaner Production, 2019, 233: 1221–1239. DOI: 10.1016/j.jclepro.2019.06.128.
[45] Mathur A., Agrawal G.D., Chandel M., Techno-economic analysis of solar parabolic trough type energy system for garment zone of Jaipur city. Renewable and Sustainable Energy Reviews, 2013, 17: 104–109.
文章导航

/