Heat Leakage Numerical Investigation of a Compound Parabolic Concentrator- Pulsating Heat Pipe Solar Collector

  • XU Rongji ,
  • CHEN Jingyan ,
  • ZHANG Xiaohui ,
  • WANG Ruixiang ,
  • XU Shuhui
展开
  • Beijing Engineering Research Center of Sustainable Energy and Buildings, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

网络出版日期: 2023-12-01

基金资助

The present work was supported by the National Natural Science Foundation of China (51506004), Beijing Municipal Natural Science Foundation (3162009), Beijing Youth Top-notch Talent Support Program (CIT&TCD201704057).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Heat Leakage Numerical Investigation of a Compound Parabolic Concentrator- Pulsating Heat Pipe Solar Collector

  • XU Rongji ,
  • CHEN Jingyan ,
  • ZHANG Xiaohui ,
  • WANG Ruixiang ,
  • XU Shuhui
Expand
  • Beijing Engineering Research Center of Sustainable Energy and Buildings, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Online published: 2023-12-01

Supported by

The present work was supported by the National Natural Science Foundation of China (51506004), Beijing Municipal Natural Science Foundation (3162009), Beijing Youth Top-notch Talent Support Program (CIT&TCD201704057).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2020

摘要

利用复合抛物面聚光器(CPC)的非跟踪聚光及脉动热管的高热流密度传热能力,提出了CPC脉动热管太阳能集热器。通过对CPC聚光比的合理设计及脉动热管的小管径,一方面保证脉动热管吸热段表面有足够的热流密度,使其工作在较低热阻状态;另一方面,在4倍聚光比下,整个集热器的厚度与平板集热器相当。论文建立了CPC脉动热管太阳能集热器的三维漏热数值模型,并与实验结果进行了对比验证。然后,分析了太阳辐射强度、风速、材料厚度(玻璃和隔热板)以及倾角等因素对新型集热器热性能的影响。结果表明,CPC脉动热管太阳能集热器的理论集热效率可达74.5%。太阳辐射强度和环境风速是集热器漏热的主要影响因素,而增加保温板和玻璃盖板的厚度对集热器的集热效率影响不大。其中,太阳辐射强度影响了脉动热管吸热表面温度,从而影响了空气夹层的自然对流,进一步影响了通过空气夹层的对外漏热。而环境风速一方面增加了玻璃盖板表面对流换热强度,同时也减弱了空气夹层的自然对流强度。当集热器倾角为45°、太阳辐射强度为1000 W/m2时,集热性能最好。论文对小尺度下太阳能聚光集热提供了参考。

本文引用格式

XU Rongji , CHEN Jingyan , ZHANG Xiaohui , WANG Ruixiang , XU Shuhui . Heat Leakage Numerical Investigation of a Compound Parabolic Concentrator- Pulsating Heat Pipe Solar Collector[J]. 热科学学报, 2022 , 31(5) : 1318 -1326 . DOI: 10.1007/s11630-020-1293-3

Abstract

As a new type of equipment for solar medium temperature utilization, the compound parabolic concentrator-pulsating heat pipe solar collector (CPC-PHPSC) uses pulsating heat pipe (PHP) as an endotherm, which can realize efficient energy conversion. The design of proper concentration ratio of compound parabolic concentrator (CPC) ensures that the incident sunlight can be concentrated on the evaporator section surface of PHP without solar tracking system. The objective of the present work is to study the influence of solar radiation intensity, air speed, material thickness (glass and insulation board) and tilt angle on the thermal performance of the new collector, which is difficult to control in the experiment. The heat leakage process and characteristics of the CPC-PHPSC were numerically studied by establishing a 3D numerical model of the collector unit. The results show that the theoretical collector efficiency of CPC-PHPSC reaches 74.5%, which is consistent with the experimental results. During operation, the heat collection performance is the best when the tilt angle is 45° and the solar radiation intensity is 1000 W/m2, while the excessive air speed will increase the convective heat loss. Increasing the thickness of insulation board and glass has little effect on the collector efficiency.

参考文献

[1] Bai Z., Sun J., Liu Q., Comprehensive assessment of line-/point-focus combined scheme for concentrating solar power system. International Journal of Energy Research, 2018, 42(5): 1983‒1998. 
[2] Xu R.J., Zhang X.H., et al., Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator. Energy Conversion and Management, 2017, 148: 68‒77.
[3] Pandey K.M., Chaurasiya R., A review on analysis and development of solar flat plate collector. Renewable & Sustainable Energy Reviews, 2017, 67: 641‒650.
[4] Kundu B., Analytic method for thermal performance and optimization of an absorber plate fin having variable thermal conductivity and overall loss coefficient. Applied Energy, 2010, 87(7): 2243‒2255.
[5] Zhu T.T., et al., Performance evaluation of a novel flat-plate solar air collector with micro-heat pipe arrays (MHPA). Applied Thermal Engineering, 2017, 118: 1‒16.
[6] Zhang D., Tao H., Wang M., et al., Numerical simulation investigation on thermal performance of heat pipe flat-plate solar collector. Applied Thermal Engineering, 2017, 118: 113‒126.
[7] Chen M.D., Liu X.B., Numerical simulation on v shaped solar flat-plate air collector. Advanced Materials Research, 2012, 594‒597: 2175‒2178.
[8] Shi Y.H., Zhu L.J., Cao Y.Z., et al., Numerical simulation study on optimization of solar flat-plate collector. Applied Mechanics & Materials, 2014, 635‒637: 523‒527.
[9] Zhang J., Tao H., Chen S., Numerical simulation for structural parameters of flat-plate solar collector. Solar Energy, 2015, 117: 192‒202.
[10] Ahmadi A., Ganji D.D., Jafarkazemi F., Analysis of utilizing Graphene nanoplatelets to enhance thermal performance of flat plate solar collectors. Energy Conversion & Management, 2016, 126(16): 1‒11.
[11] Liu L.K., Jia Y.T., Lin Y.X., et al., Numerical study of a novel miniature compound parabolic concentrating photovoltaic/thermal collector with microencapsulated phase change slurry. Energy Conversion and Management, 2017, 153: 106‒114.
[12] Kudish A.I., Evseev E.G., Walter G., et al., Simulation study of a solar collector with a selectively coated polymeric double walled absorber plate. Energy Conversion & Management, 2002, 43(5): 651‒671.
[13] Kargarsharifabad H., Mamouri S.J., Shafii M.B., et al., Experimental investigation of the effect of using closed- loop pulsating heat pipe on the performance of a flat plate solar collector. Journal of Renewable & Sustainable Energy, 2013, 5(1): 1753‒1766.
[14] Rittidech S., Donmaung A., Kumsombut K., Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV). Renewable Energy, 2009, 34(10): 2234‒2238.
[15] Rittidech S., Wannapakne S., Experimental study of the performance of a solar collector by closed-end oscillating heat pipe (CEOHP). Applied Thermal Engineering, 2007, 27(11–12): 1978‒1985.
[16] Yang Y.P., Xian H.Z., Liu D.Y., et al., Investigation on the feasibility of oscillating-flow heat pipe applied in the solar collector. International Journal of Green Energy, 2009, 6(5): 426‒436.
[17] Kargarsharifabad H., Shafii M.B., Rahni M.T., et al., Exergy analysis of a flat plate solar collector in combination with heat pipe. International Journal of Environmental Research, 2014, 8(1): 39‒48.
[18] Li L., Sun J., Li Y.S., Thermal load and bending analysis of heat collection element of direct-steam-generation parabolic-trough solar power plant. Applied Thermal Engineering, 2017, 127: 1530‒1542.
[19] Li G.Q., Design and development of a lens-walled compound parabolic concentrator-A review. Journal of Thermal Science, 2019, 28(1): 19‒31.
[20] Zhang H.F., Principles and computer simulation of solar thermal utilization. Northwestern Polytechnic University Press, 2004. (in Chinese)
文章导航

/