[1] Khan A.H., Islam M.S., A new algorithm for a condenser design for large-scale nuclear power plants in tropical region. Journal of Thermal Science, 2020, 29(5): 1370– 1389.
[2] Nusselt W., Die Oberflächenkondensation des Wasserdampfes, VDI, 1916.
[3] Cavallini A., Del Col D., Doretti L., Longo G.A., Rossetto L., Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes. International Journal of Refrigeration, 2000, 23(1): 4–25.
[4] Matkovic M., Cavallini A., Del Col D., Rossetto L., Experimental study on condensation heat transfer inside a single circular minichannel. International Journal of Heat and Mass Transfer, 2009, 52(9–10): 2311–2323.
[5] Del Col D., Bortolin S., Cavallini A., Matkovic M., Effect of cross sectional shape during condensation in a single square minichannel. International Journal of Heat and Mass Transfer, 2011, 54(17–18): 3909–3920.
[6] Othmer D.F., The condensation of steam. Industrial and Engineering Chemistry, 1929, 21(6): 576–583.
[7] Wu H., Li Y., Chen J., Analysis of an evaporator-condenser-separated mechanical vapor compression system. Journal of Thermal Science, 2013, 22(2): 152–158.
[8] Lu J., Cao H., Li J., Condensation heat and mass transfer of steam with non-condensable gases outside a horizontal tube under free convection. International Journal of Heat and Mass Transfer, 2019, 139: 564–576.
[9] Yang L., Zhang L., Li A., Wu J., Modeling thermal and geometrical effects on non-condensable gas desorption in horizontal-tube bundles of falling film evaporation. Desalination, 2020, 478: 114302.
[10] Tang G., Hu H., Zhuang Z., Tao W., Film condensation heat transfer on a horizontal tube in presence of a noncondensable gas. Applied Thermal Engineering, 2012, 36: 414–425.
[11] Shamsabadi H., Rashidi S., Esfahani J.A., Keshmiri A., Condensation in the presence of non-condensable gases in a convergent 3D channel. International Journal of Heat and Mass Transfer, 2020, 152: 119511.
[12] Bae B.U., Kim S., Park Y.S., Kang K.H., Experimental investigation on condensation heat transfer for bundle tube heat exchanger of the PCCS (Passive Containment Cooling System). Annals of Nuclear Energy, 2020, 139: 107285.
[13] Bonneau C., Josset C., Melot V., Auvity B., Comprehensive review of pure vapour condensation outside of horizontal smooth tubes. Nuclear Engineering and Design, 2019, 349: 92–108.
[14] Gu X., Zheng Z., Xiong X., Wang T., Luo Y., Wang K., Characteristics of fluid flow and heat transfer in the shell side of the trapezoidal-like tilted baffles heat exchanger. Journal of Thermal Science, 2018, 27(6): 602–610.
[15] Hsiao K.L., Conjugate heat transfer for free convection along a vertical plate fin. Journal of Thermal Science, 2010, 19(4): 337–345.
[16] Ma T., Zhang P., Shi H., Chen Y., Wang Q., Prediction of flow maldistribution in printed circuit heat exchanger. International Journal of Heat and Mass Transfer, 2020, 152: 119560.
[17] Gupta A., Kumar R., Gupta A., Condensation of R-134a inside a helically coiled tube-in-shell heat exchanger. Experimental Thermal and Fluid Science, 2014, 54: 279–289.
[18] Yang G., Ding G., Chen J., Yang W., Hu S., Experimental study on shell side heat transfer characteristics of two-phase propane flow condensation for vertical helically baffled shell-and-tube exchanger. International Journal of Refrigeration, 2019, 107: 135–144.
[19] Sun C., Li Y., Han H., Zhu J., Wang S., Liu L., Experimental and numerical simulation study on the offshore adaptability of spiral wound heat exchanger in LNG-FPSO DMR natural gas liquefaction process. Energy, 2019, 189: 116178.
[20] Risberg M., Gebart R., Numerical modeling of counter-current condensation in a Black Liquor Gasification plant. Applied Thermal Engineering, 2013, 58(1–2): 327–335.
[21] Jian G., Wang S., Sun L., Wen J., Numerical investigation on the application of elliptical tubes in a spiral-wound heat exchanger used in LNG plant. International Journal of Heat and Mass Transfer, 2019, 130: 333–341.
[22] Wang Q., Xie G., Zeng M., Luo L., Prediction of heat transfer rates for shell-and-tube heat exchangers by artificial neural networks approach. Journal of Thermal Science, 2006, 15(3): 257–262.
[23] Yu C., Ren Z., Zeng M., Numerical investigation of shell-side performance for shell and tube heat exchangers with two different clamping type anti-vibration baffles. Applied Thermal Engineering, 2018, 133: 125–136.
[24] Hirt C., Nichols B., Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201–225.
[25] Lee W.H., Computational methods for two-phase flow and particle transport, World Scientific, Taipei, 2013.
[26] Menter F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598–1605.
[27] Menter F.R., Kuntz M., Langtry R., Ten years of industrial experience with the SST turbulence model. Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, October 12–17, 2003.
[28] ANSYS Inc., ANSYS FLUENT User Guide 18, 2017.
[29] Yin Z., Investigation on heat transfer performance of vapor condensation with noncondensable gas in channels. Xi’an Jiaotong University, Xi’an, China, 2016. (in Chinese)
[30] Taitel Y., Dukler A.E., A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal, 1976, 22(1): 47–55.
[31] Yu C., Cheng T., Chen J., Ren Z., Zeng M., Investigation on thermal-hydraulic performance of parallel-flow shell and tube heat exchanger with a new type of anti-vibration baffle and wire coil using RSM method. International Journal of Thermal Sciences, 2019, 138: 351–366.