燃烧和反应

Anisotropic Combustion of Aluminum Nanoparticles in Carbon Dioxide and Water Flows

  • CHANG Xiaoya ,
  • CHEN Dongping ,
  • CHU Qingzhao
展开
  • 1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
    2. Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing 100081, China

网络出版日期: 2023-12-01

基金资助

The project number is ZDKT21-01. The authors also acknowledge the support from Foundation of Science and Technology on Combustion and Explosion Laboratory and National Natural Science Foundation of China (No. 51806016 and 52106130).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Anisotropic Combustion of Aluminum Nanoparticles in Carbon Dioxide and Water Flows

  • CHANG Xiaoya ,
  • CHEN Dongping ,
  • CHU Qingzhao
Expand
  • 1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
    2. Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing 100081, China

Online published: 2023-12-01

Supported by

The project number is ZDKT21-01. The authors also acknowledge the support from Foundation of Science and Technology on Combustion and Explosion Laboratory and National Natural Science Foundation of China (No. 51806016 and 52106130).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

本文基于反应分子动力学探究了纳米铝粉在二氧化碳和水气流中的各向异性燃烧。通过对铝粉的形态演化和传热传质过程进行分析,揭示了各向异性燃烧的本质,并从原子水平上阐明了铝粉在不同氧化氛围中的反应机理,确定了三原子气体分子的断键和关键中间体的形成路径。结果表明,在低流速(≤6km/s)的情况下,铝粉以表面反应为主;在强烈冲击下(8km/s),氧化过程由气相反应控制。此外,本文进一步将气流流速转化为气体分子的初始能量,旨在突出气流氧化特性对铝粉燃烧的影响。在低初始动能(<122.2kJ/mol)的条件下,铝粉氧化遵循扩散机理,点火延迟主要受氧化剂的反应速率和热释放的影响。当气流分子初始动能增加到458.1kJ/mol时,气体氧化剂的影响减弱,传热成为主导因素。在极端情况下(>458.1kJ/mol),铝粉氧化呈现微爆机理,不同氧化剂的点火延迟几乎相同。

本文引用格式

CHANG Xiaoya , CHEN Dongping , CHU Qingzhao . Anisotropic Combustion of Aluminum Nanoparticles in Carbon Dioxide and Water Flows[J]. 热科学学报, 2022 , 31(3) : 867 -881 . DOI: 10.1007/s11630-022-1614-9

Abstract

Shock-induced combustion of aluminum nanoparticles was examined in the CO2 and H2O flows up to 8 km/s using reactive molecular dynamics. The morphological evolutions and heat/mass transfer of ANPs were discussed to reveal the nature of anisotropic combustion. The breakage of triatomic gas molecule and the formation of key intermediates were identified to illustrate the reaction mechanisms at the atomic level. It was found that surface reactions prevail for cases in lower flow velocity (≤6 km/s), and gas-phase reactions govern the oxidation process under the intense impact (8 km/s). In particular, we converted the flow velocity to the initial kinetic energy of flow molecules to highlight the impact of oxidizing ability on the shock-induced combustion. In the regime of low initial kinetic energy (<122.2 kJ/mol), the oxidation follows the diffusion mechanism, and the ignition delay is mainly affected by the reaction rate and heat release of oxidizers. Further increasing the initial kinetic energy (<458.1 kJ/mol), the impact of oxidizers weakens and the heat transfer becomes dominant. In the extreme scenarios (>458.1 kJ/mol), the overall oxidation is governed by the microexplosion mechanism, and different oxidizers share almost the same ignition delay.

参考文献

[1] Gumus S., Ozcan H., Ozbey M., Topaloglu B., Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine. Fuel, 2016, 163: 80–87.
[2] Wu Q., Xie X., Wang Y., Roskilly T., Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine. Applied Energy, 2018, 221: 597–604.
[3] Thangavelu S.K., Ahmed A.S., Ani F.N., Impact of metals on corrosive behavior of biodiesel-diesel-ethanol (BDE) alternative fuel. Renewable Energy, 2016, 94: 1–9.
[4] Zhong W., Ji W., Cao X., Yuan Y., Flue gas water recovery by indirect cooling technology for large-scale applications: a review. Journal of Thermal Science, 2020, 29(5): 1223–1241.
[5] Usman M., Hayat N., Bhutta MMA., SI engine fueled with gasoline, CNG and CNG-HHO blend: comparative evaluation of performance, emission and lubrication oil deterioration. Journal of Thermal Science, 2020, 30(4): 1199–1211.
[6] Zhang Y., van Duin ACT., Luo K., Investigation of ethanol oxidation over aluminum nanoparticle using ReaxFF molecular dynamics simulation. Fuel, 2018, 234: 94–100.
[7] Xiao L., Fan X., Li J., Qin Z., Fu X., Pang W., et al., Effect of Al content and particle size on the combustion of HMX-CMDB propellant. Combustion and Flame, 2020, 214: 80–89.
[8] Javed I., Baek S.W., Waheed K., Evaporation characteristics of heptane droplets with the addition of aluminum nanoparticles at elevated temperatures. Combustion and Flame, 2013, 160(1): 170–183.
[9] Wang X., Dai M., Wang J., Xie Y., Ren G., Jiang G., Effect of ceria concentration on the evaporation characteristics of diesel fuel droplets. Fuel, 2019, 236: 1577–1585.
[10] Sundaram D.S., Yang V., Zarko V.E., Combustion of nano aluminum particles (Review). Combustion, Explosion, and Shock Waves, 2015, 51(2): 173–196.
[11] Kong C., Yu D., Yao Q., Li S., Morphological changes of nano-Al agglomerates during reaction and its effect on combustion. Combustion and Flame, 2016, 165: 11–20.
[12] Fayad M.A., Dhahad H.A., Effects of adding aluminum oxide nanoparticles to butanol-diesel blends on performance, particulate matter, and emission characteristics of diesel engine. Fuel, 2021, 286: 119363.
[13] Gao J., Yan J., Zhao B., Zhang Z., Yu Q., In situ observation of temperature-dependent atomistic and mesoscale oxidation mechanisms of aluminum nanoparticles. Nano Research, 2020, 13(1):183–187.
[14] Yetter R.A., Risha G.A., Son S.F., Metal particle combustion and nanotechnology. Proceedings of the Combustion Institute, 2009, 32(2): 1819–1838.
[15] Mei Z., An Q., Zhao F., Xu S., Ju X., Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives. Physical Chemistry Chemical Physics, 2018, 20(46): 29341–29350.
[16] Allen C., Mittal G., Sung C.J., Toulson E., Lee T., An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proceedings of the Combustion Institute, 2011, 33(2): 3367–3374.
[17] Bazyn T., Krier H., Glumac N., Oxidizer and pressure effects on the combustion of 10-micron aluminum particles. Journal of Propulsion and Power, 2005, 21(4): 577–582.
[18] Zhu X., Schoenitz M., Dreizin E.L., Aluminum powder oxidation in CO2 and mixed CO2/O2 environments. The Journal of Physical Chemistry C, 2009, 113(16): 6768–6773.
[19] Zhu X., Schoenitz M., Dreizin E.L., Oxidation of aluminum particles in mixed CO2/H2O atmospheres. The Journal of Physical Chemistry C, 2010, 114(44): 18925–18930.
[20] Servaites J., Krier H., Melcher J.C., Burton R.L., Ignition and combustion of aluminum particles in shocked H2O/O2/Ar and CO2/O2/Ar mixtures. Combustion and Flame, 2001, 125(1): 1040–1054.
[21] Dong R., Mei Z., Zhao F., Xu S., Ju X., Initial oxidation of nano-aluminum particles by H2O/H2O2: Molecular dynamics simulation. International Journal of Hydrogen Energy, 2021, 46(1): 1234–1245.
[22] Chu Q., Shi B., Liao L., Zou X., Luo K., Wang N., Reaction mechanism of the aluminum nanoparticle: physicochemical reaction and heat/mass transfer. The Journal of Physical Chemistry C, 2020, 124(6): 3886–3894.
[23] Song L., Xu S., Zhao F., Ju X., Atomistic insight into shell–core evolution of aluminum nanoparticles in reaction with gaseous oxides at high temperature. Journal of Materials Science, 2020, 55(30): 14858–14872.
[24] van Duin A.C.T., Dasgupta S., Lorant F., Goddard W.A., ReaxFF:  A Reactive Force Field for Hydrocarbons. The Journal of Physical Chemistry A, 2001, 105(41): 9396–9409.
[25] Senftle T.P., Hong S., Islam M.M., Kylasa S.B., Zheng Y., Shin Y.K., et al., The ReaxFF reactive force-field: development, applications and future directions. npj Computational Materials, 2016, 2(1): 15011.
[26] Hong S., van Duin A.C.T., Atomistic-scale analysis of carbon coating and its effect on the oxidation of aluminum nanoparticles by ReaxFF-molecular dynamics Simulations. The Journal of Physical Chemistry C, 2016, 120(17): 9464–9474.
[27] Zhang X., Fu C., Xia Y., Duan Y., Li Y., Wang Z., et al., Atomistic origin of the complex morphological evolution of aluminum nanoparticles during oxidation: a chain-like oxide nucleation and growth mechanism. ACS Nano, 2019, 13(3): 3005–3014.
[28] Dong R., Mei Z., Zhao F., Xu S., Ju X., Molecular dynamics simulation on the reaction of nano-aluminum with water: size and passivation effects. Rsc Advances, 2019, 9(71): 41918–41926.
[29] Chen Y., Guildenbecher D.R., Hoffmeister K.N.G., Cooper M.A., Stauffacher H.L., Oliver M.S., et al., Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry. Combustion and Flame, 2017, 182: 225–237.
[30] Chowdhury S., Sullivan K., Piekiel N., Zhou L., Zachariah M.R., Diffusive vs explosive reaction at the nanoscale. The Journal of Physical Chemistry C, 2010, 114(20): 9191–9195.
[31] Sundaram D.S., Puri P., Yang V., A general theory of ignition and combustion of nano- and micron-sized aluminum particles. Combustion and Flame, 2016, 169: 94–109.
[32] Savel’ev A.M., Starik A.M., The formation of (Al2O3)n clusters as a probable mechanism of aluminum oxide nucleation during the combustion of aluminized fuels: Numerical analysis. Combustion and Flame, 2018, 196: 223–236.
[33] Chu Q., Shi B., Liao L., Luo K., Wang N., Huang C., Ignition and oxidation of core-shell Al/Al2O3 nanoparticles in an oxygen atmosphere: insights from molecular dynamics simulation. The Journal of Physical Chemistry C, 2018, 122(51): 29620–29627.
[34] Hong S., van Duin A.C.T., Molecular dynamics simulations of the oxidation of aluminum nanoparticles using the ReaxFF reactive force field. The Journal of Physical Chemistry C, 2015, 119(31): 17876–17886.
[35] Song L., Zhao F., Xu S., Ju X., Atomic origin of the morphological evolution of aluminum hydride (AlH3) nanoparticles during oxidation using reactive force field simulations. Applied Surface Science, 2020, 519: 146249.
[36] Schlöffel G., Eichhorn A., Albers H., Mundt C., Seiler F., Zhang F., The effect of a shock wave on the ignition behavior of aluminum particles in a shock tube. Combustion and Flame, 2010, 157(3): 446–454.
[37] Chang X., Chu Q., Chen D., Shock-induced anisotropic metal combustion. The Journal of Physical Chemistry C, 2020, 124(24): 13206–13214.
[38] Chenoweth K., van Duin A.C.T., Goddard W.A., ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. The Journal of Physical Chemistry A, 2008, 112(5): 1040–1053.
[39] Plimpton S., Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19.
[40] Stukowski A., Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 015012.
[41] Chaban V.V., Fileti E.E., Prezhdo O.V., Buckybomb: reactive molecular dynamics simulation. The Journal of Physical Chemistry Letters, 2015, 6(5): 913–917.
[42] Liu P., Liu J., Wang M., Ignition and combustion of nano-sized aluminum particles: a reactive molecular dynamics study. Combustion and Flame, 2019, 201: 276–289.
[43] Cottrell T.L., The strengths of chemical bonds. Butterworths Scientific Publications, 1958.
[44] Haynes W.M., CRC handbook of chemistry and physics. CRC press, 2014.
文章导航

/