燃烧和反应

Investigation of the Laminar Premixed n-Propylamine Flame

  • LI Wang ,
  • CHEN Jintao ,
  • YANG Jiuzhong ,
  • TIAN Zhenyu
展开
  • 1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. National Synchrotron Radiation Laboratory, University of Science and Technology, Hefei 230029, China

网络出版日期: 2023-12-01

基金资助

The authors are grateful for the funding supports from National Natural Science Foundation of China (No. 52161145105), the Ministry of Science and Technology of China (No.2017YFA0402800), Beijing Municipal Natural Science Foundation (JQ20017), K.C. Wong Education Foundation and Recruitment Program of Global Youth Experts. The authors also thank the researchers in NSRL.

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Investigation of the Laminar Premixed n-Propylamine Flame

  • LI Wang ,
  • CHEN Jintao ,
  • YANG Jiuzhong ,
  • TIAN Zhenyu
Expand
  • 1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. National Synchrotron Radiation Laboratory, University of Science and Technology, Hefei 230029, China

Online published: 2023-12-01

Supported by

The authors are grateful for the funding supports from National Natural Science Foundation of China (No. 52161145105), the Ministry of Science and Technology of China (No.2017YFA0402800), Beijing Municipal Natural Science Foundation (JQ20017), K.C. Wong Education Foundation and Recruitment Program of Global Youth Experts. The authors also thank the researchers in NSRL.

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

本文采用了同步辐射真空紫外光电离与飞行时间质谱相结合的技术,对燃烧当量的1.7、压力为35 torr的正丙胺层流预混火焰进行了研究。实验中共检测和辨别出了40种产物和中间体,其中,乙烯醇、烯丙胺、丁二烯、乙烯基乙炔、1,3-丁二烯、1-丁烯、2-丁烯、正丁基、1,3-环戊二烯、环戊烯、2-戊烯、苯、甲苯、乙苯、2-丙烯-1-亚胺、环丙烯、吡咯、2-丁烯腈和正丁胺为首次在胺类燃料的测流预混火焰中被检测到。本研究中也给出了一些主要物质的摩尔分数分布。氰化氢和氮气被认为是正丙胺层流预混火焰中的主要含氮产物,这与之前含氮燃料层流火焰研究中一氧化氮为主要含氮产物不同。本研究中,基于密度泛函理论,通过量子化学计算,在CBS-QB3的水平上计算了燃料分子的键能,结果表明,CH3CH2-CH2NH2键的键能最低,并且,正丙胺分子裂解主要分解为CH3CH2和CH2NH2自由基。在α碳位置上的氢提取反应对于正丙胺分子的消耗起到明显的促进作用。本文的实验结果将会为下一步正丙胺燃料反应动力学模型的构建提供基础。

本文引用格式

LI Wang , CHEN Jintao , YANG Jiuzhong , TIAN Zhenyu . Investigation of the Laminar Premixed n-Propylamine Flame[J]. 热科学学报, 2022 , 31(3) : 854 -866 . DOI: 10.1007/s11630-022-1528-6

Abstract

The laminar premixed n-propylamine (NPA) flame with equivalence ratio of 1.70 has been investigated at 4666.28 Pa using tunable synchrotron photoionization and molecular-beam mass spectrometry techniques. Chemical structures and mole fractions of 40 species were determined. Ethenol, allylamine, butadiyne, vinylacetylene, 1,3-butadiene, 1-butene, 2-butene, n-butyl radical, 1,3-cyclopentadiene, cyclopentene, 2-pentene, benzene, toluene, ethylbenzene, 2-propen-1-imine, cyclopropanimine, pyrrole, 2-butenenitrile and n-butylamine were newly identified in the amine flames. Mole fraction profiles of some species including reactants, intermediates and products in the NPA flame were given. HCN and N2 were observed as the primary N-containing products in the NPA flame, which was different from the result that NO was the major N-containing products in previous studies of nitrogen flames. The bond energies of NPA were calculated through quantum chemistry calculations on the basis of density functional theory at the CBS-QB3 level. It showed that the CH3CH2-CH2NH2 bond was the weakest and NPA mainly decomposed to CH2NH2 and C2H5 radicals. The H-abstractions at Cα by OH/O (NPA+OH=CH3CH2CHNH2+H2O and NPA+O=CH3CH2CHNH2+OH) had significant promoting effects on NPA consumption. The N conversion chain of NPA under flame conditions was proposed and detailed analysis with respect to intermediates especially the nitrogen-containing species were provided. The results will enrich the understanding of NPA flame and are essential to further establish the kinetic mechanism.

参考文献

[1] Wu L.N., Tian Z.Y., Weng J.J., Yu D., Liu Y.X., Tian D.X., Cao C.C., Zou J.B., Zhang Y., Yang J.Z., Experimental and kinetic study on the low-temperature oxidation of pyridine as a representative of fuel-N compounds. Combustion and Flame, 2019, 202: 394–404.
[2] Zhang H., Liu J., Shen J., Jiang X., Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char (N) (char bound nitrogen) in coal combustion. Energy, 2015, 82: 312–321.
[3] Glarborg P., Jensen A.D., Johnsson J.E., Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science, 2003, 29(2): 89–113.
[4] Wojtowicz M.A., Pels J.R., Moulijn J.A., The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel, 1995, 74(4): 507–516.
[5] Tian Z.Y., Zhang L.D., Li Y.Y., Yuan T., Qi F., An experimental and kinetic modeling study of a premixed nitromethane flame at low pressure. Proceedings of the Combustion Institute, 2009, 32(1): 311–318.
[6] Brackmann C., Nauclér J.D., El-Busaidy S., Hosseinnia A., Bengtsson P.-E., Konnov A.A., Nilsson E.J.K., Experimental studies of nitromethane flames and evaluation of kinetic mechanisms. Combustion and Flame, 2018, 190: 327–336.
[7] Okafor E.C., Naito Y., Colson S., Ichikawa A., Kudo T., Hayakawa A., Kobayashi H., Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames. Combustion and Flame, 2018, 187: 185–198.
[8] Liu S., Zou C., Song Y., Cheng S., Lin Q., Experimental and numerical study of laminar flame speeds of CH4/NH3 mixtures under oxy-fuel combustion. Energy, 2019, 175: 250–258.
[9] Ichikawa A., Naito Y., Hayakawa A., Kudo T., Kobayashi H., Burning velocity and flame structure of CH4/NH3/air turbulent premixed flames at high pressure. International Journal of Hydrogen Energy, 2019, 44(13): 6991–  6999.
[10] Tian Z.Y., Li Y.Y., Zhang L.D., Glarborg P., Qi F., An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combustion and Flame, 2009, 156: 1413–1426.
[11] Hemeryck A., Motta A., Lacaze-Dufaure C., Costa D., Marcus P., DFT-D study of adsorption of diaminoethane and propylamine molecules on anatase (101) TiO2 surface. Applied Surface Science, 2017, 426: 107–115.
[12] Liu Z.J., Atakan B., Kohse-Höinghaus K., Deposition of hexagonal GaN using n-propylamine as a nitrogen precursor. Journal of Crystal Growth, 2000, 219(1): 176–179.
[13] Kim B.K., Ryu S.K., Kim B.J., Park S.J., Adsorption behavior of propylamine on activated carbon fiber surfaces as induced by oxygen functional complexes. Journal of Colloid and Interface Science, 2006, 302(2): 695–697.
[14] Badari A.C., Harnos S., Lónyi F., Onyestyák G., Štolcová M., Kaszonyi A., Valyon J., A study of the selective catalytic hydroconversion of biomass-derived pyrolysis or fermentation liquids using propylamine and acetic acid as model reactants. Catalysis Communications, 2015, 58: 1–5.
[15] Higashihara T., Gardiner W.C., Hwang S.M., Shock tube and modeling study of methylamine thermal decomposition. Journal of Physical Chemistry, 1987, 91(7): 1900–1905.
[16] Kantak M.V., Manrique K.S.D., Aglave R.H., Hesketh R.P., Methylamine oxidation in a flow reactor: Mechanism and modeling. Combustion and Flame, 1997, 108: 235–265.
[17] Li S., Davidson D.F., Hanson R.K., Shock tube study of ethylamine pyrolysis and oxidation. Combustion and Flame, 2014, 161: 2512–2518.
[18] Lucassen A., Zhang K., Warkentin J., Moshammer K., Glarborg P., Marshall P., Kohse-Höinghaus K., Fuel-nitrogen conversion in the combustion of small amines using dimethylamine and ethylamine as biomass- related model fuels. Combustion and Flame, 2012, 159: 2254–2279.
[19] Pappijn C.R., Vin N., Vermeire F.H., Van De Vijver R., Herbinet O., Battin-Leclerc F., Reyniers M.F., Marin G.B., Van Geem K.M., Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine. Fuel, 2020, 275(1): 117744.
[20] Garner S., Dubois T., Togbe C., Chaumeix N., Dagaut P., Brezinsky K., Biologically derived diesel fuel and NO formation Part 2: Model development and extended validation. Combustion and Flame, 2011, 158: 2302– 2313.
[21] Taylor H., Austin H.E., The thermal decomposition of propylamine. The Journal of Physical Chemistry, 2002, 35: 2658–2666.
[22] Sickman D.V., Rice O.K., The thermal decomposition of propylamine. Journal of the American Chemical Society, 1935, 57(1): 22–24.
[23] Almatarneh M.H., Elayan I.A., Al-Sulaibi M., Al Khawaldeh A., Saber S.O.W., Al-Qaralleh M., Altarawneh M., Unimolecular decomposition reactions of propylamine and protonated propylamine. ACS Omega, 2019, 4(2): 3306–3313.
[24] Verhaak M., Vandillen A.J., Geus J.W., Disproportionation of n-propylamine on supported nickel catalysts. Applied Catalysis a-General, 1994, 109(2): 263–275.
[25] Badari A.C., Harnos S., Lonyi F., Onyestyak G., Stolcova M., Kaszonyi A., Valyon J., A study of the selective catalytic hydroconversion of biomass-derived pyrolysis or fermentation liquids using propylamine and acetic acid as model reactants. Catalysis Communications, 2015, 58: 1–5.
[26] Almatarneh M.H., Omari R., Omeir R.A., Khawaldeh A., Afaneh A.T., Sinnokrot M., Akhras A., Marashdeh A., Computational study of the unimolecular and bimolecular decomposition mechanisms of propylamine. Scientific Reports, 2020, 10(1): 11698.
[27] Yang B., Huang C.Q., Yang R., Wei L.X., Wang J., Wang S.S., Shan X.B., Qi F., Zhang Y.W., Sheng L.S., Wang Z.Y., Hao L.Q., Zhou S.K., Vacuum ultraviolet photoionization and photodissociation of pentafluoroethane. Acta Physico-Chimica Sinica, 2005, 21(5): 539–543.
[28] Qi F., Yang R., Yang B., Huang C., Wei L., Wang J., Sheng L., Zhang Y., Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization. Review of Scientific Instruments, 2006, 77(8): 084101.
[29] Cool T.A., Nakajima K., Taatjes C.A., Mcilroy A., Westmoreland P.R., Law M.E., Morel A., Studies of a fuel-rich propane flame with photoionization mass spectrometry. Proceedings of the Combustion Institute, 2005, 30(1): 1681–1688.
[30] Zhou Z., Mass spectrometry, photoionization. Encyclopedia of Analytical Science, 2019, 6: 483–489.
[31] Wang J., Yang B., Li Y., Tian Z., Zhang T., Qi F., Nakajima K., The tunable VUV single-photon ionization mass spectrometry for the analysis of individual components in gasoline. International Journal of Mass Spectrometry, 2006, 263(1): 30–37.
[32] Chen J.T., Yu D., Li W., Chen W.Y., Song S.B., Xie C., Yang J.Z., Tian Z.Y., Oxidation study of benzaldehyde with synchrotron photoionization and molecular beam mass spectrometry. Combustion and Flame, 2020, 220: 455–467.
[33] Muller C., Michel V., Scacchi G., Come G.M., Thergas-a computer program for the evaluation of thermochemical data of molecules and free radicals in the gas phase. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1995, 92: 1154–1178.
[34] Photonionization Cross Section Database (Version 2.0), National Synchrotron Radiation Laboratory, Hefei, China, 2017, http://flame.nsrl.ustc.edu.cn/database/. 
[35] Cool T.A., Wang J., Nakajima K., Taatjes C.A., Mcllroy A., Photoionization cross sections for reaction intermediates in hydrocarbon combustion. International Journal of Mass Spectrometry, 2005, 247(1): 18–27.
[36] Hansen N., Cool T.A., Westmoreland P.R., Kohse-Höinghaus K., Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry. Progress in Energy and Combustion Science, 2009, 35(2): 168–191.
[37] Hartlieb A., Atakan B., Kohse-Hoinghaus K., Effects of a sampling quartz nozzle on the flame structure of a fuel-rich low-pressure propene flame. Combustion and Flame, 2000, 121: 610–624.
[38] Struckmeier B.U., Oßwald P., Kasper T., Böhlin L., Heusing M., Köhler M., Andreas B., Kohse-Höinghaus K., Sampling probe influences on temperature and species concentrations in molecular beam mass spectroscopic investigations of flat premixed low pressure flames. International Journal of Research in Physical Chemistry and Chemical Physics, 2009, 223(4): 503–537.
[39] Jin K.R., Tian Z.Y., Effect of thermal radiation heat transfer on the temperature measurement by thermocouple in premixed laminar flames. Journal of Thermal Science, 2021, (Accepted).
[40] Liu M., Jiang X., Fang Y., Guo M., Ding C., Numerical investigation on convective heat transfer of supercritical carbon dioxide in a mini tube considering entrance effect. Journal of Thermal Science, 2021, 30(6): 1986–2001.
[41] Pappijn C.A.R., Vin N., Vermeire F.H., Van De Vijver R., Herbinet O., Battin-Leclerc F., Reyniers M.F., Marin G.B., Van Geem K.M., Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine. Fuel, 2020, 275(1): 117744.
[42] Tian D.X., Liu Y.X., Wang B.Y., Cao C.C., Liu Z.K., Zhai Y.T., Zhang Y., Yang J.Z., Tian Z.Y., Pyrolysis study of iso-propylbenzene with photoionization and molecular beam mass spectrometry. Combustion and Flame, 2019, 209(2019): 313–321.
[43] Wang B.Y., Liu Y.X., Weng J.J., Glarborg P., Tian Z.Y., New insights in the low-temperature oxidation of acetylene. Proceedings of the Combustion Institute, 2017, 36(1): 355–363.
[44] Maclean D.I., Wagner H.G., The structure of the reaction zones of ammonia oxygen and hydrazine decomposition flames. Proceedings of the Combustion Institute, 1967, 11(1): 871–878.
[45] Glarborg P., Miller J.A., Ruscic B., Klippenstein S.J., Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 2018, 67: 31–68.
[46] Lucassen A., Labbe N., Westmoreland P.R., Kohse-Höinghaus K., Combustion chemistry and fuel-nitrogen conversion in a laminar premixed flame of morpholine as a model biofuel. Combustion and Flame, 2011, 158: 1647–1666.
[47] Taatjes C.A., Hansen N., Miller J.A., Cool T.A., Wang J., Westmoreland P.R., Law M.E., Kasper T., Kohse-Höinghaus K., Combustion chemistry of enols: Possible ethenol precursors in flames. Journal of Physical Chemistry A, 2006, 110(9): 3254–3260.
[48] Taatjes C.A., Hansen N., Mcilroy A., Miller J.A., Senosiain J.P., Klippenstein S.J., Qi F., Sheng L.S., Zhang Y.W., Cool T.A., Wang J., Westmoreland P.R., Law M.E., Kasper T., Kohse-Höinghaus K., Enols are common intermediates in hydrocarbon oxidation. Science, 2005, 308(5730): 1887–1889.
[49] Hansen N., Miller J.A., Westmoreland P.R., Kasper T., Kohse-Höinghaus K., Wang J., Cool T.A., Isomer-specific combustion chemistry in allene and propyne flames. Combustion and Flame, 2009, 156: 2153–2164.
[50] Man X., Tang C., Zhang J., Zhang Y., Pan L., Huang Z., Law C.K., An experimental and kinetic modeling study of n-propanol and i-propanol ignition at high temperatures. Combustion and Flame, 2014, 161: 644–656.
[51] Tian Z.Y., Li Y.Y., Zhang T.C., Zhu A.G., Cui Z.F., Qi F., An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization. Combustion and Flame, 2007, 151: 347–365.
[52] Memon H.U.R., Bartle K.D., Taylor J.M., Williams A., The shock tube pyrolysis of pyridine. International Journal of Energy Research, 2000, 24(13): 1141–1159.
[53] Mackie J.C., Colket M.B., Nelson P.F., Shock tube pyrolysis of pyridine. Journal of Physical Chemistry, 1990, 94(10): 4099–4106.
[54] Hong X., Zhang L., Zhang T., Qi F., An experimental and theoretical study of pyrrole pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry. Journal of Physical Chemistry A, 2009, 113(18): 5397–5405.
[55] Mcenally C.S., Pfefferle L.D., The effects of dimethyl ether and ethanol on benzene and soot formation in ethylene nonpremixed flames. Proceedings of the Combustion Institute, 2007, 31(1): 603–610.
[56] Riedl Z., Hajos G., Pelaez W.J., Gafarova I.T., Moyano E.L., Yranzo G.I., Flash vacuum pyrolysis (FVP) of 1,2,4-benzotriazine derivatives. Tetrahedron, 2003, 59(6): 851–856.
[57] Zhao L., Xie M., Ye L., Cheng Z., Cai J., Li Y., Qi F., Zhang L., An experimental and modeling study of methyl propanoate pyrolysis at low pressure. Combustion and Flame 2013, 160: 1958–1966.
[58] Alessio F., Alberto C., Tiziano F., Ulrich N., Eliseo R., Reinhard S., Kalyanasundaram S., An experimental and kinetic modeling study of n-propanol and iso-propanol combustion. Combustion and Flame, 2010, 157: 2–16.
[59] Li W., Zhang Y., Mei B., Li Y., Cao C., Zou J., Yang J., Cheng Z., Experimental and kinetic modeling study of n-propanol and i-propanol combustion: Flow reactor pyrolysis and laminar flame propagation. Combustion and Flame, 2019, 207: 171–185.
文章导航

/