传热传质

Lattice Boltzmann Method for Conduction and Radiation Heat Transfer in Composite Materials

  • TONG Zixiang ,
  • LI Mingjia ,
  • XIE Tao ,
  • GU Zhaolin
展开
  • 1. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    2. Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    3. Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China

网络出版日期: 2023-12-01

基金资助

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Lattice Boltzmann Method for Conduction and Radiation Heat Transfer in Composite Materials

  • TONG Zixiang ,
  • LI Mingjia ,
  • XIE Tao ,
  • GU Zhaolin
Expand
  • 1. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    2. Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    3. Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China

Online published: 2023-12-01

Supported by

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

本文探讨了格子玻尔兹曼方法(LBM)在复合材料内导热-辐射耦合传热问题中的应用。文章首先针对辐射传输方程,建立了30速度和38速度的LBM模型,并给出了各方向权系数的计算方法。接着引入了导热的有限容积方法(FVM)和辐射的离散坐标方法(DOM),对比了LBM-LBM、FVM-LBM和FVM-DOM几种组合模型在二维和三维导热-辐射耦合传热问题中的应用。结果表明26速度的D3Q26-LBM模型在计算辐射传输方程时精度较低,而D3Q30-LBM和D3Q38-LBM的精度与DOM较为一致。对于导热问题,LBM在模型松弛系数较大时存在较大误差。因此,其在应用于组分导热系数差异较大的复合材料传热问题中存在局限。最后,采用LBM辐射模型,在复合材料传热计算中会比FVM-DOM模型具有更高的计算效率。综合考虑计算精度和计算效率,推荐采用FVM-D3Q30-LBM耦合模型。

本文引用格式

TONG Zixiang , LI Mingjia , XIE Tao , GU Zhaolin . Lattice Boltzmann Method for Conduction and Radiation Heat Transfer in Composite Materials[J]. 热科学学报, 2022 , 31(3) : 777 -789 . DOI: 10.1007/s11630-022-1524-x

Abstract

In this work, the utilization of lattice Boltzmann method (LBM) in the simulation of coupled conduction and radiation heat transfer in composite materials is studied. The novel D3Q30-LBM and D3Q38-LBM models are proposed for the simulation of radiative transfer equation (RTE). The LBM-LBM model, coupled finite volume method (FVM) and LBM are compared with the coupled FVM and discrete ordinate method (DOM) for 2D and 3D simulations. The results show that the original D3Q26-LBM is insufficient for the simulation of radiation, and both the D3Q30-LBM and D3Q38-LBM are close to the DOM for the RTE. The LBM can have large errors in the simulation of heat conduction when the relaxation time is large. Thus, its application in the composite materials is limited when the ratio between thermal conductivities of different components is large. The models with LBM for RTE can be more efficient than the FVM-DOM for the simulation of conduction-radiation heat transfer in composite materials. The FVM-D3Q30-LBM model is suggested because of its accuracy and efficiency.

参考文献

[1] He Y.L., Xie T., Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Applied Thermal Engineering, 2015, 81: 28–50.
[2] Xie T., He Y.L., Hu Z.J., Theoretical study on thermal conductivities of silica aerogel composite insulating material. International Journal of Heat and Mass Transfer, 2013, 58(1–2): 540–552.
[3] Patankar S.V., Numerical heat transfer and fluid flow. McGraw-Hill: New York, 1980.
[4] Howell J.R., Siegel R., Mengüc M.P., Thermal radiation heat transfer. 5th Edition, CRC Press: Boca Raton, 2010.
[5] Modest M.F., Radiative heat transfer. 2nd Edition. Academic Press: New York, 2003.
[6] Li Q., Luo K.H., Kang Q.J., He Y.L., Chen Q., Liu Q., Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 2016, 52: 62–105.
[7] Wang M., Wang J., Pan N., Chen S., Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Physical Review E, 2007, 75(3): 036702.
[8] Mishra S.C., Roy H.K., Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method. Journal of Computational Physics, 2007, 223(1): 89–107.
[9] Das R., Mishra S.C., Ajith M., Uppaluri R., An inverse analysis of a transient 2-D conduction-radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer. 2008, 109(11): 2060–2077.
[10] Mondal B., Mishra S.C., Application of the lattice Boltzmann method and the discrete ordinates method for solving transient conduction and radiation heat transfer problems. Numerical Heat Transfer, Part A: Applications. 2007, 52(8): 757–775.
[11] Asinari P., Mishra S.C., Borchiellini R., A lattice Boltzmann formulation for the analysis of radiative heat transfer problems in a participating medium. Numerical Heat Transfer, Part B: Fundamentals, 2010, 57(2): 126–146.
[12] Di Rienzo A.F., Asinari P., Borchiellini R., Mishra S.C., Improved angular discretization and error analysis of the lattice Boltzmann method for solving radiative heat transfer in a participating medium. International Journal of Numerical Methods for Heat & Fluid Flow, 2011, 21(5): 640–662.
[13] Mishra S.C., Vernekar R.R., Analysis of transport of collimated radiation in a participating media using the lattice Boltzmann method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(16): 2088–2099.
[14] Ma Y., Dong S.K., Tan H.P., Lattice Boltzmann method for one-dimensional radiation transfer. Physical Review E, 2011, 84(1): 016704.
[15] Bindra H., Patil D.V., Radiative or neutron transport modeling using a lattice Boltzmann equation framework. Physical Review E, 2012, 86(1): 016706.
[16] McHardy C., Horneber T., Rauh C., New lattice Boltzmann method for the simulation of three-dimensional radiation transfer in turbid media. Optics express, 2016, 24(15): 16999–17017.
[17] McHardy C., Horneber T., Rauh C., Spectral simulation of light propagation in participating media by using a lattice Boltzmann method for photons. Applied Mathematics and Computation, 2018, 319: 59–70.
[18] Mink A., Thäter G., Nirschl H., Krause M.J., A 3D lattice Boltzmann method for light simulation in participating media. Journal of Computational Science, 2016, 17: 431–437.
[19] Zhang Y., Yi H., Tan H., One-dimensional transient radiative transfer by lattice Boltzmann method. Optics Express, 2013, 21(21): 24532–24549.
[20] Zhang Y., Yi H.L., Tan H.P., The lattice Boltzmann method for one-dimensional transient radiative transfer in graded index gray medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 137: 1–12.
[21] Zhang Y., Yi H.L., Tan H.P., Short-pulsed laser propagation in a participating slab with Fresnel surfaces by lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2015, 80: 717–726.
[22] Zhang Y., Yi H.L., Tan H.P., Lattice Boltzmann method for short-pulsed laser transport in a multi-layered medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 155: 75–89.
[23] Vernekar R.R., Mishra S.C., Analysis of transport of short-pulse radiation in a participating medium using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2014, 77: 218–229.
[24] McCulloch R., Bindra H., Coupled radiative and conjugate heat transfer in participating media using lattice Boltzmann methods. Computers & Fluids, 2016, 124: 261–269.
[25] Gairola A., Bindra H., Lattice Boltzmann method for solving non-equilibrium radiative transport problems. Annals of Nuclear Energy, 2017, 99: 151–156.
[26] Nataraj S., Reddy K.S., Thampi S.P., Lattice Boltzmann simulations of a radiatively participating fluid in Rayleigh-Benard convection. Numerical Heat Transfer, Part A: Applications, 2017, 72(4): 313–329.
[27] Xie T., He Y.L., Heat transfer characteristics of silica aerogel composite materials: structure reconstruction and numerical modeling. International Journal of Heat and Mass Transfer, 2016, 95: 621–635.
[28] Sun Y., Zhang X., Analysis of transient conduction and radiation problems using lattice Boltzmann and finite volume methods. International Journal of Heat and Mass Transfer, 2016, 97: 611–617.
[29] Kim T.Y., Baek S.W., Analysis of combined conductive and radiative heat transfer in a two-dimensional rectangular enclosure using the discrete ordinates method. International Journal of Heat and Mass Transfer, 1991, 34(9): 2265–2273.
[30] Chai J.C., Lee H.O.S., Patankar S.V., Ray effect and false scattering in the discrete ordinates method. Numerical Heat Transfer, Part B Fundamentals, 1993, 24(4): 373–389.
[31] Holdych D.J., Noble D.R., Georgiadis J.G., Buckius R.O., Truncation error analysis of lattice Boltzmann methods. Journal of Computational Physics, 2004, 193(2): 595–619.
[32] Fu T., Tang J., Chen K., Zhang F., Determination of scattering and absorption coefficients of porous silica aerogel composites. Journal of Heat Transfer, 2016, 138(3): 032702.
文章导航

/