燃烧和反应

Pilot Combustion Characteristics of RP-3 Kerosene in a Trapped-Vortex Cavity with Radial Bluff-Body Flameholder

  • ZHANG Yuxuan ,
  • HE Xiaomin
展开
  • 1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    2. Aero-Engine Thermal Environment and Structure, Key Laboratory of Ministry of Industry and Information Technology, Nanjing 210016, China

网络出版日期: 2023-11-28

基金资助

This work was supported by the National Science and Technology Major Project (No.2017-III-0008-0034).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Pilot Combustion Characteristics of RP-3 Kerosene in a Trapped-Vortex Cavity with Radial Bluff-Body Flameholder

  • ZHANG Yuxuan ,
  • HE Xiaomin
Expand
  • 1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    2. Aero-Engine Thermal Environment and Structure, Key Laboratory of Ministry of Industry and Information Technology, Nanjing 210016, China

Online published: 2023-11-28

Supported by

This work was supported by the National Science and Technology Major Project (No.2017-III-0008-0034).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

驻涡凹腔结合径向火焰稳定器的结构,可以在负压和高来流速度等极端环境下维持稳定燃烧。本文对这种结构的燃烧特征进行了完整的研究。使用数值仿真方式,获得了典型物理模型的流场。通过试验方法得到了该结构的值班燃烧特征,包括燃烧过程、燃烧效率和壁温分布等。在不同的来流参数和供油流量下,该结构的值班燃烧可以被划分为三种模态:在“仅凹腔稳焰(CM)”模态下,值班火焰位于凹腔两侧,随凹腔主涡一同旋转;在“凹腔和径向稳定器共同稳焰(CFM)”模态下,燃烧过程同时发生在凹腔内和径向稳定器后方;而在“仅径向稳定器稳焰(FM)”模态下,凹腔将发生熄火,由径向火焰稳定器独立维持燃烧。由于周向上的流场差异,不同燃烧模态下,火焰形态和传播方向将产生变化。受此影响,燃烧效率将呈现“上升-下降-再上升”趋势。各壁面温度分布也将受到影响;在大供油流量下,凹腔壁面温度将下降,而燃烧室后导流板壁温将持续上升至最大值。

本文引用格式

ZHANG Yuxuan , HE Xiaomin . Pilot Combustion Characteristics of RP-3 Kerosene in a Trapped-Vortex Cavity with Radial Bluff-Body Flameholder[J]. 热科学学报, 2023 , 32(1) : 468 -487 . DOI: 10.1007/s11630-022-1746-y

Abstract

The structure of the trapped-vortex cavity and radial flameholder can maintain stable combustion under severe conditions, such as sub-atmospheric pressure and high inlet velocity. This article reports a complete study of combustion characteristics for this design. The flow field of the physical model was obtained by numerical simulation. The pilot combustion characteristics, including the combustion process, combustion efficiency, and wall temperature distribution, were studied by experiments. The pilot combustion can be divided into three modes under different fuel flow rates and inlet conditions. In “cavity maintained (CM)” mode, pilot flame exists at both sides of the cavity zone, rotating with the main vortex. In “cavity-flameholder maintained (CFM)” mode, the combustion process occurs both inside the cavity and behind the flameholder. While in “flameholder maintained (FM)” mode, the cavity will quench, and the combustion is maintained by the radial flameholder only. Due to the difference in the flow field, the flame pattern and propagation direction vary under different combustion modes. The combustion efficiency, influenced by combustion modes, shows an increase-decrease-increase curve. The wall temperature distribution is also affected; the cavity wall temperature decreases under large fuel flux while the temperature of the burner-back plate continues to rise to a maximum value.

参考文献

[1] Zhao Y., He X., Li M., Lu R., Yao K., Ignition, efficiency and emissions of RP-3 kerosene in a three-staged multi-injection combustor. Fuel Processing Technology, 202, 213: 106635. DOI: 10.1016/j.fuproc.2020.106635.
[2] Zhong L., Yang Y., Jin T., Xia Y., Fang Y., Zheng Y., Wang G., Local flame and flow properties of propagating premixed turbulent flames during light-round process in a MICCA-type annular combustor. Combustion and Flame, 2021, 231: 111494. DOI: 10.1016/j.combustflame.2021.111494.
[3] Wang G., Zhong L., Yang Y., Experimental investigation of the ignition dynamics in an annular premixed combustor with oblique-injecting swirling burners. Fuel, 2021, 287: 119494. DOI: 10.1016/j.fuel.2020.119494.
[4] Bai N., Fan W., Zhang R., Numerical investigation into the structural characteristics of a hydrogen dual-swirl combustor with slight temperature rise combustion. International Journal of Hydrogen Energy, 2021, 46(43): 22646–22658. DOI: 10.1016/j.ijhydene.2021.04.075.
[5] Li Z., Moradi R., Marashi M., Babazadeh H., Choubey G., Influence of backward-facing step on the mixing efficiency of multi microjets at supersonic flow. Acta Astronautica, 2020, 175: 37–44. DOI: 10.1016/j.actaastro.2020.05.003.
[6] Zhao S., Fan Y., Analysis of flow resistance and combustion characteristics in the combined application of step and strut. Aerospace Science and Technology, 2020, 98: 105676. DOI: 10.1016/j.ast.2019.105676.
[7] Wei J., Xie Q., Zhang J., Ren Z., Flow, mixing, and flame stabilization in bluff-body burner with decreased central jet velocity. Physics of Fluids, 2021, 33: 067122. DOI: 10.1063/5.0052933.
[8] Huang Y., He X., Jin Y., Zhu H., Zhu Z., Effect of non-uniform inlet profile on the combustion performance of an afterburner with bluff body. Energy, 2021, 216: 119142. DOI: 10.1016/j.energy.2020.119142.
[9] Choubey G., Gaud P., Fatah A.M., Devarajan Y., Numerical investigation on geometric sensitivity and flame stabilisation mechanism in H2 fueled two-strut based scramjet combustor. Fuel, 2022, 313: 122847. DOI: 10.1016/j.fuel.2021.122847.
[10] Choubey G., Deuarajan Y., Huang W., Mehar K., Tiwari M., Pandey K., Recent advances in cavity-based scramjet engine—A brief review. International Journal of Hydrogen Energy, 2019, 44: 13895–13909. DOI: 10.1016/j.ijhydene.2019.04.003.
[11] Huang W., Du Z., Yan L., Xia Z., Supersonic mixing in airbreathing propulsion systems for hypersonic flights. Progress in Aerospace Sciences, 2019, 109: 100545. DOI: 10.1016/j.paerosci.2019.05.005.
[12] Huang W., Du Z., Yan L., Moradi R., Flame propagation and stabilization in dual-mode scramjet combustors: A survey. Progress in Aerospace Sciences, 2018, 101: 13–30. DOI: 10.1016/j.paerosci.2018.06.003.
[13] Hsu K., Gross L., Trump D., Roquemore W., Performance of a trapped-vortex combustor. 33rd Aerospace Sciences Meeting and Exhibit, Reno, U.S., 1995. DOI: 10.2514/6.1995-810.
[14] Hasegawa H., Shimada Y., Kashikawa I., Yoshimura T., Kinoshita Y., Kitahara K., Experimental study of compact ram combustor with double-staged flameholders for ATR engine. 37th Joint Propulsion Conference and Exhibit, Salt Lake City, U.S., AIAA-2001-3292. 
DOI: 10.2514/6.2001-3292.
[15] Lee J., Winslow R., Buehrle B.J., The GE-NASA RTA hyperburner design and development. NASA/TM-2005- 213803, 2005.
[16] Zhang R., Bai N., Fan W., Huang X., Fan X., Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity. Energy, 2019, 189: 116216. DOI: 10.1016/j.energy.2019.116216.
[17] Straub D.L., Casleton K.H., Lewis R.E., Sidwell T.G., Maloney D.J., Richards G.A., Assessment of rich-burn, quick-mix, lean-burn trapped vortex combustor for stationary gas turbines. Journal of Engineering for Gas Turbines and Power, 2005, 127: 36–41. DOI: 10.1115/1.1789152.
[18] Haynes J.M., Micka D., Hojnacki B., Russell C., Lipinski J., Shome B., Huffman M., Trapped Vortex Combustor performance for heavy-duty gas turbines. Turbo Expo: Power for Land, Sea, and Air, Orlando, U.S., 2008, pp. 31–36. DOI: 10.1115/GT2008-50134.
[19] Guyot D., Bothien M., Moeck J., Schimek S., Lacarelle A., Paschereit O., Faustmann T., Gutmark E., Pollutant and noise emissions in a flameless trapped-vortex reheat burner. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, U.S., AIAA 2007-5630. DOI: 10.2514/6.2007-5630.
[20] Zhao D., Gutmark E., Goey P.D., A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors. Progress in Energy and Combustion Science, 2018, 66: 42–82. DOI: 10.1016/j.pecs.2017.12.001
[21] Roquemore W.M., Shouse D., Burrus D., Trapped vortex combustor concept for gas turbine engines. AIAA 2001-0483, 2001. DOI: 10.2514/6.2001-483.
[22] Burguburu J., Cabot G., Renou B., Flame stabilization by hot products gases recirculation in a trapped vortex combustor. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, 2012, pp. 319–328. DOI: 10.1115/GT2012-68451.
[23] Zhu Y., Jin Y., He X., Effects of location and angle of primary injection on the cavity flow structure of a trapped vortex combustor model. Optik, 2019, 180: 699–712. DOI: 10.1016/j.ijleo.2018.11.107.
[24] Merlin C., Domingo P., Vervisch L., Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC)—A flamelet presumed-pdf closure preserving laminar flame speed. Comptes Rendus Mecanique, 2012, 340: 917–932. DOI: 10.1016/j.crme.2012.10.039.
[25] Jin Y., Li Y., He X., Zhang J., Jiang B., Wu Z., Song Y., Experimental investigations on flow field and combustion characteristics of a model trapped vortex combustor. Applied Energy, 2014, 134: 257–269. DOI: 10.1016/j.apenergy.2014.08.029.
[26] Jiang B., Cui G., Jin Y., Zhao Z., Liu D., He X., Flow field characteristics, mixing and emissions performance of a lab-scale rich-quench-lean trapped-vortex combustor utilizing a quench orifice plate combined with a bluff-body. Chinese Journal of Aeronautics, 2021, 34: 476–492. DOI: 10.1016/j.cja.2020.08.030.
[27] Chen S., Zhao D., Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor. Aerospace Science and Technology, 2018, 74: 84–92. DOI: 10.1016/j.ast.2018.01.006.
[28] Chen S., Zhao D., Numerical study of guide vane effects on reacting flow characteristics in a trapped vortex combustor. Combustion Science and Technology, 2018, 190: 2111–2133. DOI: 10.1080/00102202.2018.1492568.
[29] Singhal A., Ravikrishna R.V., Single cavity trapped vortex combustor dynamics Part 1: Experiments. International Journal of Spray and Combustion Dynamics, 2011, 3: 23–44. DOI: 10.1260/1756-8277.3.1.23.
[30] Agarwal K.K., Ravikrishna R.V., Experimental and numerical studies in a compact trapped vortex combustor: stability assessment and augmentation. Combustion Science and Technology, 2011, 183: 1308–1327. DOI: 10.1080/00102202.2011.592516.
[31] Agarwal K.K., Krishna S., Ravikrishna R.V., Mixing enhancement in a compact trapped vortex combustor. Combustion Science and Technology, 2013, 185: 363–378. DOI: 10.1080/00102202.2012.721034.
[32] Li M., He X., Zhao Y., Jin Y., Ge Z., Huang W., Effect of strut length on combustion performance of a trapped vortex combustor. Aerospace Science and Technology, 2018, 76: 204–216. DOI: 10.1016/j.ast.2018.02.019.
[33] Zhao Y., He X., Xiao J., Li M., Effect of cavity-air injection mode on the performance of a trapped vortex combustor. Aerospace Science and Technology, 2010, 106: 106183. DOI: 10.1016/j.ast.2020.106183.
[34] Li M., He X., Zhao Y., Jin Y., Yao K., Ge Z., Performance enhancement of a trapped-vortex combustor for gas turbine engines using a novel hybrid-atomizer. Applied Energy, 2016, 216: 286–295. DOI: 10.1016/j.apenergy.2018.02.111.
[35] Wu Z., He X., Investigations on emission characteristics of a liquid-fueled trapped vortex combustor. Journal of Thermal Science, 2020, 29: 69–80. DOI: 10.1007/s11630-019-1232-3.
[36] Jiang P., He X., Performance of a novel mixed-flow trapped vortex combustor for turboshaft engine. Aerospace Science Technology, 2020, 105: 106034. DOI: 10.1016/j.ast.2020.106034.
[37] Zhang R.C., Huang X.Y., Fan W.J., Bai N.J., Influence of injection mode on the combustion characteristics of slight temperature rise combustion in gas turbine combustor with cavity. Energy, 2019, 179: 603–617. DOI: 10.1016/j.energy.2019.04.223.
[38] Zhang Y., He X., Zhu H., Study on atomization performance of multi-orifice air-assisted plain jet atomizers. Fuel, 2021, 286: 119428. DOI: 10.1016/j.fuel.2020.119428.
[39] Zhang Y., He X., Ignition, lean blowout, and flame propagation in a combustor using flameholder with a trapped vortex cavity. Fuel, 2022, 324: 124656. DOI: 10.1016/j.fuel.2022.124656.
[40] Wang L., Research on cooling technology of a trapped vortex combustor. Nanjing University of Aeronautics and Astronautics, 2011. (In Chinese)
[41] Fan X., Yu G., Analysis of thermophysical properties of daqing RP-3 aviation kerosene. Journal of Propulsion Technology, 2006, 27: 187–192. (In Chinese) DOI: 10.13675/j.cnki.tjjs.2006.02.021.
[42] Miao J., Fan Y., Influence of struts on cavity at subsonic speeds: Flow characteristics. Proceedings of the Institution of Mechanical Engineers, Part G. Journal of Aerospace Engineering, 2019, 233: 5369–5379. DOI: 10.1177/0954410019843726.
[43] Miao J., Fan Y., Wu W., Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor. Applied Energy, 2020, 283: 116307. https://doi.org/10.1016/j.apenergy.2020.116307.
[44] Li M., He X., Zhao Y., Dome structure effects on combustion performance of a trapped vortex combustor. Applied Energy, 2017, 208: 72–82. DOI: 10.1016/j.apenergy.2017.10.029.
[45] Zhao Y., He X., Li M., Effect of mainstream forced entrainment on the combustion performance of a gas turbine combustor. Applied Energy, 2020, 279: 115824. DOI: 10.1016/j.apenergy.2020.115824.
文章导航

/