其他

Numerical and Experimental Study on Performance of a Low-Backpressure Polyhedral Thermoelectric Generator for Waste Heat Recovery

  • QUAN Rui ,
  • LI Yangxin ,
  • LI Tao ,
  • CHANG Yufang ,
  • YAN Huaicheng
展开
  • 1. Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China
    2. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China

网络出版日期: 2023-11-28

基金资助

This paper was supported by the National Natural Science Foundation of China (51977061, 51407063, 61903129) and Open Foundation of Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System (HBSEES202205).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Numerical and Experimental Study on Performance of a Low-Backpressure Polyhedral Thermoelectric Generator for Waste Heat Recovery

  • QUAN Rui ,
  • LI Yangxin ,
  • LI Tao ,
  • CHANG Yufang ,
  • YAN Huaicheng
Expand
  • 1. Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China
    2. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China

Online published: 2023-11-28

Supported by

This paper was supported by the National Natural Science Foundation of China (51977061, 51407063, 61903129) and Open Foundation of Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System (HBSEES202205).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

优化换热器翅片布置和尺寸,可以提高将废热转化为电能的温差发电系统最大输出功率。考虑到几何对称结构有利于提高温度均匀性和方便热电器件的布置,本文研制了一种基于多面体热交换器的低背压温差发电系统。为了评估内部拓扑结构和翅片参数对系统传热和输出功率的影响,建立了一个可实现的k-ɛ湍流数值模型,并进行了数值模拟验证。结果表明,增大翅片长度、翅片宽度和翅片夹角有利于提高温差发电系统的平均表面温度、温度分布均匀性和最大输出功率。适当减小翅片间距有助于提高温差发电系统的平均表面温度和最大功率,但对系统温度均匀性的影响不显著。优化后的翅片长度、宽度、夹角和翅片间距的插片可以提高输出功率,但会增加背压。实验结果与仿真结果的最大差值为3.2%,验证了所建立的数值模型的可行性。本研究为汽车尾气余热回收利用低背压温差发电系统的优化设计和性能分析提供了理论参考。

本文引用格式

QUAN Rui , LI Yangxin , LI Tao , CHANG Yufang , YAN Huaicheng . Numerical and Experimental Study on Performance of a Low-Backpressure Polyhedral Thermoelectric Generator for Waste Heat Recovery[J]. 热科学学报, 2023 , 32(1) : 109 -124 . DOI: 10.1007/s11630-022-1698-2

Abstract

Optimized fin arrangement and dimension of heat exchanger can improve the maximum output power of thermoelectric generator (TEG) system which converts the wasted heat into electricity with thermoelectric modules (TEMs). Considering that the geometric symmetry contributes to the temperature uniformity improvement and convenient TEMs arrangement, a low-backpressure TEG system based on a polyhedral-shape heat exchanger was developed. To assess the effect of inner topology and fin parameters on the heat transfer and output power of the TEG system, a realizable k-ɛ turbulence based numerical model was established and validated to perform numerical simulations. The results demonstrate that increasing fin length, fin width and fin intersection angle are beneficial to the average surface temperature, temperature distribution uniformity and maximum output power of the TEG system. Moreover, decreasing fin spacing distance contributes to the enhanced average surface temperature and maximum power of TEG system, and has insignificant effect on its temperature uniformity. The inserted fins with optimal length, width, intersection angle and spacing distance enhance higher output power, whereas result in increasing backpressure. The maximum difference between the experimental and simulation results is 3.2%, which validates the feasibility of the established numerical model. It also provides a theoretical reference to the optimal design and performance analysis of low-backpressure TEG systems used in automobile exhaust heat recovery.

参考文献

[1] Champier D., Thermoelectric generators: A review of applications. Energy Conversion and Management, 2017, 140: 167–181.
[2] Wang Z.Q., Hu Y.H., Xia X.X., Comparison of conventional and advanced exergy analysis for dual-loop organic Rankine cycle used in engine waste heat recovery. Journal of Thermal Science, 2021, 31(1): 177–190.
[3] Willars-Rodríguez F.J., Chávez-Urbiola E.A., Vorobiev P., Vorobiev Y.V., Investigation of solar hybrid system with concentrating Fresnel lens, photovoltaic and thermoelectric generators. International Journal of Energy Research, 2017, 41(3): 377–388.
[4] LaLonde A.D., Pei Y., Wang H., Jeffrey Snyder G., Lead telluride alloy thermoelectrics. Material Today, 2011, 14(11): 526–532.
[5] Quan R., Liu G.Y., Wang C.J., Zhou W., Huang L., Deng Y.D., Performance investigation of an exhaust thermoelectric generator for military SUV application. Coatings, 2018, 8(1): 45.
[6] Kim Y., Gu H.M., Kim C., Choi H., Lee G., Kim S., Yi K., Lee S., Cho B., High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator. Energy, 2018, 162: 526–533.
[7] Leonov V., Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sensor Journal, 2013, 13(6): 2284–2291.
[8] Meng F.K., Chen L.G., Feng Y.L., Xiong B., Thermoelectric generator for industrial gas phase waste heat recovery. Energy, 2017, 135: 83–90.
[9] Jaziri N., Boughamoura A., Müller J., Mezghani B., Tounsi  F., Ismail M., A comprehensive review of thermoelectric generators: technologies and common applications. Energy Reports, 2020, 6(7): 264–287.
[10] Quan R., Liang W.L., Quan S.L., Huang Z.K., Liu Z.Z., Chang Y.F., Tan B.H., Performance interaction assessment of automobile exhaust thermoelectric generator and engine under different operating conditions. Applied Thermal Engineering, 2022, 216: 119055.
[11] Fernández-Yáñez P., Armas O., Kiwan R., Stefanopoulou A.G., Boehman A.L., A thermoelectric generator in exhaust systems of spark-ignition and compression- ignition engines. A comparison with an electric turbo- generator. Applied Energy, 2018, 229: 80–87.
[12] Li B., Huang K., Yan Y., Li Y., Twaha S., Zhu J., Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles. Applied Energy, 2017, 205: 868–879.
[13] Demir M.E., Dincer I., Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery. Applied Thermal Engineering, 2017, 120: 694–707.
[14] Espinosa N., Lazard M., Aixala L., Scherrer H., Modeling a thermoelectric generator applied to diesel automotive heat recovery. Journal of Electronic Materials, 2010, 39(9): 1446–1455.
[15] Kempf N., Zhang Y., Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement. Energy Conversion and Management, 2016, 121: 224–231. 
[16] Marvão A., Coelho P.J., Rodrigues H.C., Optimization of a thermoelectric generator for heavy-duty vehicles. Energy Conversion and Management, 2019, 179: 178–191.
[17] Li X.L., Xie C.J., Quan S.H., Huang L., Fang W., Energy management strategy of thermoelectric generation for localized air conditioners in commercial vehicles based on 48 V electrical system. Applied Energy, 2018, 231: 887–900.
[18] Bai W.R., Yuan X.H., Liu X., Numerical investigation on the performances of automotive thermoelectric generator employing metal foam. Applied Thermal Engineering, 2017, 124: 178–184.
[19] Kumar S., Heister S.D., Xu X., Salvador J., Meisner G.P., Thermoelectric generators for automotive waste heat recovery systems Part II: parametric evaluation and topological studies. Journal of Electronic Materials, 2013, 42(6): 944–955.
[20] Quan R., Li T., Yue Y.S., Chang Y.F., Tan B.H., Experimental study on a thermoelectric generator for industrial waste heat recovery based on a polyhedral-shape heat exchanger. Energies, 2020, 12(13): 3137.
[21] Quan R., Wang C.J., Wu F., Chang Y.F., Deng Y.D., Parameter matching and optimization of an isg mild hybrid powertrain based on an automobile exhaust thermoelectric generator. Journal of Electronic Materials, 2020, 49(5): 2734–2746.
[22] Mostafavi S.A., Mahmoudi M., Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters. Applied Thermal Engineering, 2018, 132: 624–636.
[23] Weng C.C., Huang M.J., A simulation study of automotive waste heat recovery using a thermoelectric power generator. International Journal of Thermal Sciences, 2013, 71: 302–309.
[24] Meng J.H., Zhang X.X., Wang X.D., Dynamic response characteristics of thermoelectric generator predicted by a three-dimensional heat-electricity coupled model. Journal of Power Sources, 2014, 245: 262–269.
[25] Luo D., Wang R.C., Yu W., Zhou W.Q., Parametric study of a thermoelectric module used for both power generation and cooling. Renewable Energy, 2020, 154: 542–552.
[26] Ebling D., Jaegle M., Bartel M., Jacquot A., Böttner H., Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. Journal of Electronic Materials, 2009, 38(7): 1456–1461.
[27] Musial M., Borcuch M., Wojciechowski K., The influence of a dispersion cone on the temperature distribution in the heat exchanger of a thermoelectric generator. Journal of Electronic Materials, 2016, 45: 1517–1522.
[28] Bargiel P., Kostowski W., Klimanek A., Gorny K., Design and optimization of a natural gas-fired thermoelectric generator by computational fluid dynamics modeling. Energy Conversion and Management, 2017, 149: 1037–1047.
[29] Nayak R.K., Ray S., Sahoo S.S., Satapathy P.K., Effect of angle of attack and wind direction on limiting input heat flux for solar assisted thermoelectric power generator with plate fin heat sink. Solar Energy, 2019, 186: 175–190.
[30] Wang Y.C., Zhao W.S., Wang P.F., Jiang J., Luo X.Y., Thermal performance of elliptical fin-and-tube heat exchangers with vortex generator under various inclination angles. Journal of Thermal Science, 2021, 31(1): 257–270.
[31] Gou X.L., Xiao H., Yang S.W., Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy, 2010, 87: 3131–3136.
[32] Niu X., Yu J.L., Wang S.Z., Experimental study on low-temperature waste heat thermoelectric generator. Journal of Power Sources, 2009, 188(2): 621–626.
[33] Zhao Y.L., Wang S.X., Ge M.H., Liang Z.J., Liang Y.F., Li Y.Z., Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery. Applied Energy, 2019, 239: 425–433.

文章导航

/