A Confined Laminar Slot Impinging Jet at Low Reynolds Numbers: Unsteady Flow and Heat Transfer Characteristics

展开
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

网络出版日期: 2023-11-28

基金资助

The authors gratefully acknowledge the support for the research from the National Key R&D Program of China (2018YFB0604404).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

A Confined Laminar Slot Impinging Jet at Low Reynolds Numbers: Unsteady Flow and Heat Transfer Characteristics

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2023-11-28

Supported by

The authors gratefully acknowledge the support for the research from the National Key R&D Program of China (2018YFB0604404).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

在本研究中,数值模拟了二维受限空间中低雷诺数层流狭缝射流冲击等温平板表面的非定常流动和传热特性。基于喷嘴宽度和射流平均入口速度定义的雷诺数分别为120、150和200。结果表明,雷诺数为120、150和200的分别对应于不同的流动特征,即稳态流动、射流柱的间歇拍打运动和连续正弦拍打状态。基于一些不同时刻的流场快照,解释了射流柱间歇拍打运动和连续正弦拍打状态的动力学特性和驱动机制。当射流的雷诺数为150和200时,在滞止区外还有其他的努塞尔数峰值,这与射流两侧脱落的涡旋与平板表面边界层之间的干涉有关。此外,通过动力学模态分解方法,准确提取了具有特征频率的流动模态。当雷诺数为150时,存在一个拍打模态,描述了射流柱的横向拍打运动。当雷诺数为200时,存在与射流的拍打运动有关的多个流动模态,另外还有一个低频模态,反映了回流区边界轮廓和位置的周期性变化。

本文引用格式

SHI Lei, SUN Chong, ZHU Xiaocheng, DU Zhaohui . A Confined Laminar Slot Impinging Jet at Low Reynolds Numbers: Unsteady Flow and Heat Transfer Characteristics[J]. 热科学学报, 2023 , 32(2) : 753 -769 . DOI: 10.1007/s11630-022-1744-0

Abstract

In this study, the unsteady flow and heat transfer characteristics of a laminar slot jet at low Reynolds numbers impinging on an isothermal plate surface in a two-dimensional confined space are numerically investigated. The investigations are performed at Reynolds numbers of 120, 150 and 200 based on the nozzle width and mean inlet velocity of the jet. Results show that the Reynolds numbers of 120, 150 and 200 correspond to different flow features, namely, a steady flow, an intermittent flapping motion of jet column and a continuous sinusoidal flapping state, respectively. Based on some time snapshots of the flow field, the dynamic characteristics and driving mechanism of the intermittent flapping motion of the jet column and the continuous sinusoidal flapping state are explained. When the jet flaps at the Reynolds number 150 and 200, there are other Nusselt number peaks outside the stagnation zone, which are related to the interference between the vortices shedding on both sides of the jet and the boundary layers of the plate surface. Furthermore, the dynamic mode decomposition is implemented to accurately extract flow modes with characteristic frequencies. For a Reynolds number of 150, there is a flapping mode, which describes the lateral flapping motion of the jet column. When the Reynolds number is 200, there are multiple modes related to the flapping motion of the jet, as well as a low-frequency mode, which reflects the periodic changes of the boundary contour and position of the recirculation zone.

参考文献

[1] Zhou J., Wang X., Li J., Influences of effusion hole diameter on impingement/effusion cooling performance at turbine blade leading edge. International Journal of Heat and Mass Transfer, 2019, 134(5): 1101–1118.
[2] Masip Y., Campo A., Nuñez S.M., Experimental analysis of the thermal performance on electronic cooling by a combination of cross-flow and an impinging air jet. Applied Thermal Engineering, 2020, 167: 114779.
[3] Marco P.D., Frigo S., Gabbrielli R., Pecchia S., Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper. Energy, 2016, 114: 201–213.
[4] Alamir M., Witrant E., Valle G.D., Rouaud O., Josset C., Boillereaux L., Estimation of energy saving thanks to a reduced-model-based approach: example of bread baking by jet impingement. Energy, 2013, 53: 74–82.
[5] Chauhan R., Thakur N.S., Investigation of the thermohydraulic performance of impinging jet solar air heater. Energy, 2014, 68: 255–261.
[6] Webb B.W., Ma C.F., Single-phase liquid jet impingement heat transfer. Advances in Heat Transfer, 1995, 26(08): 105–217.
[7] Shih T., Thamire C., Sung C., Ren A., Literature survey of numerical heat transfer (2000-2009): Part 1. Numerical Heat Transfer, Part A: Applications, 2010, 57(3–4): 159–296.
[8] Chiriac V.O., Ortega A., A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface. International Journal of Heat and Mass Transfer, 2002, 45(6): 1237–1248.
[9] Lee H.G., Yoon H.S., Ha M.Y., A numerical investigation on the fluid flow and heat transfer in the confined impinging slot jet in the low Reynolds number region for different channel heights. International Journal of Heat and Mass Transfer, 2008, 51(15–16): 4055–4068.
[10] Varieras D., Brancher P., Giovannini A., Self-sustained oscillations of a confined impinging jet. Flow, Turbulence and Combustion, 2007, 78(1): 1–5.
[11] Uzol O., Camci C., Experimental and computational visualization and frequency measurements of the jet oscillation inside a fluidic oscillator. Journal of Visualization, 2002, 5(3): 263–272.
[12] Lee G.B., Kuo T.Y., Wu W.Y., A novel micromachined flow sensor using periodic flapping motion of a planar jet impinging on a V-shaped plate. Experimental Thermal and Fluid Science, 2002, 26(5): 435–444.
[13] Durst F., Pereira J., Tropea C., The plane Symmetric sudden-expansion flow at low Reynolds numbers. Journal of Fluid Mechanics, 1993, 248: 567–581.
[14] Liu S., Wang B., Wan Z., Ma D., Sun D., Bifurcation analysis of laminar isothermal planar opposed-jet flow. Computers & Fluids, 2016, 140: 72–80.
[15] Chomaz J., Fully nonlinear dynamics of parallel wakes. Journal of Fluid Mechanics, 2003, 495: 57–75.
[16] Cho J.R., Numerical observations of a bifurcating plane impinging jet in a confined channel. Journal of Visualization, 2006, 9(4): 361–362.
[17] Lee D.H., Bae J.R., Park H.J., Lee J.S., Ligrani P., Confined, milliscale unsteady laminar impinging slot jets and surface Nusselt numbers. International Journal of Heat and Mass Transfer, 2011, 54(11–12): 2408–2418.
[18] Lee D.H., Park H.J., Ligrani P., Milliscale confined impinging slot jets: Laminar heat transfer characteristics for an isothermal flat plate. International Journal of Heat and Mass Transfer, 2012, 55(9–10): 2249–2260.
[19] Chatterjee A., Tarbell J., Laminar stability and heat transport in high aspect ratio planar confined impinging flows. International Journal of Heat and Mass Transfer, 2019, 137: 534–544.
[20] Chatterjee A., Fabris D., Planar non-Newtonian confined laminar impinging jets: Hysteresis, linear stability, and periodic flow. Physics of Fluids, 2017, 29(10): 103103.
[21] Meliga P., Chomaz J.M., Global modes in a confined impinging jet: application to heat transfer and control. Theoretical and Computational Fluid Dynamics, 2011, 25: 170–193.
[22] Fluent, Theory Guide. A.N.S.Y.S., Release 17.0, 2016.
[23] Schmid P.J., Sesterhenn J., Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010, 656(10): 5–28.
[24] Semeraro O., Bellani G., Lundell F., Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes. Experiments in Fluids, 2012, 53(5): 1203–1220.
[25] Schmid P.J., Li L., Juniper M.P., Pust O., Applications of the dynamic mode decomposition. Theoretical and Computational Fluid Dynamics, 2011, 25(1): 249–259.
[26] Schmid P.J., Violato D., Scarano F., Decomposition of time-resolved tomographic PIV. Experiments in Fluids, 2012, 52(6): 1567–1579.
[27] Basley J., Pastur L.R., Delprat N., Lusseyran F., Space-time aspects of a three-dimensional multi-modulated open cavity flow. Physics of Fluids, 2013, 25(6): 695–719.
[28] Lusseyran F., Gueniat F., Basley J., Douay C.L., Pastur L.R., Faure T.M., Schmid P.J., Flow coherent structures and frequency signature: Application of the dynamic modes decomposition to open cavity flow. Journal of Physics: Conference Series, 2011, 318(4): 042036.
[29] Mizuno Y., Duke D., Atkinson C., Soria J., Investigation of wall-bounded turbulent flow using Dynamic mode decomposition. Journal of Physics: Conference Series, 2011, 318(4): 042040.
[30] Ostoich C.M., Bodony D.J., Geubelle P.H., Interaction of a Mach 2.25 turbulent boundary layer with a fluttering panel using direct numerical simulation. Physics of Fluids, 2013, 25(11): 171–186.
[31] Sayadi T., Schmid P.J., Nichols J.W., Moin P., Reduced-order representation of near-wall structures in the late transitional boundary layer. Journal of Fluid Mechanics, 2014, 748: 278–301.
[32] Lee J.H., Seena A., Lee S.H., Sung H.J., Turbulent boundary layers over rod- and cube-roughened walls. Journal of Turbulence, 2012, 13(40): 1–26.
[33] Tu J., Rowley C., Aram E., Mittal R., Koopman spectral analysis of separated flow over a finite-thickness flat plate with elliptical leading edge. AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011.
[34] Pan C., Yu D., Wang J., Dynamical mode decomposition of Gurney flap wake flow. Theoretical and Applied Mechanics Letters, 2011, 1(1): 012002.
[35] Iungo G.V., Santoni-Ortiz C., Abkar M., Porte-Agel F., Rotea M.A., Leonardi S., Data-driven reduced order model for prediction of wind turbine wakes. Journal of Physics: Conference Series, 2015, 625: 012009.
[36] Dunne R., Mckeon B.J., Dynamic stall on a pitching and surging airfoil. Experiments in Fluids, 2015, 56(8): 157.
[37] Rowley C., Mezic I., Bagheri S., Schlatter P., Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 2009, 641: 115–127.
[38] Iyer P.S., Mahesh K., A numerical study of shear layer characteristics of low-speed transverse jets. Journal of Fluid Mechanics, 2016, 790: 275–307.
[39] Seena A., Sung H.J., Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. International Journal of Heat and Fluid Flow, 2011, 32(6): 1098–1110.
[40] Brouilliot D., Étude experimentale de l’aérothermique et de la dynamique des jets impactants. Ph.D. thesis, Université de Toulouse III, France, 2016.
文章导航

/