Tailoring Polyimide Chain by Melamine-Cyanurate Supramolecule via a Molecular Welding Strategy Achieving Superior Thermal Conductivity

展开
  • 1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
    2. School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
    3. School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

网络出版日期: 2023-11-27

基金资助

The authors acknowledge funding from the Shanghai Sailing Program (21YF1414200), Discipline of Shanghai-Materials Science and Engineering, and Shanghai Engineering Research Center of Advanced Thermal Functional Material.

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Tailoring Polyimide Chain by Melamine-Cyanurate Supramolecule via a Molecular Welding Strategy Achieving Superior Thermal Conductivity

Expand
  • 1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
    2. School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
    3. School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2023-11-27

Supported by

The authors acknowledge funding from the Shanghai Sailing Program (21YF1414200), Discipline of Shanghai-Materials Science and Engineering, and Shanghai Engineering Research Center of Advanced Thermal Functional Material.

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

摘要

聚酰亚胺(PI)薄膜广泛应用于印刷电路板、电子封装、界面面材料、显示面板等领域。提高PI膜的热导率对促进微电子器件的有效散热具有重要意义。本文设计了具有多个氢键的三聚氰胺氰尿酸盐(MC),并通过原位共沉淀法将其引入水溶性聚酰胺酸(Ws-PAA)溶液中。MC超分子在PI链的末端形成化学键,同时也通过氢键和π-π共轭来限制相邻链,通过这种分子焊接策略来改善链的排列。定制的PI/MC薄膜表现出各向异性热导率(TC):面内TC可达到0.93W/mK,而透面TC为0.60W/mK。微观形态和结构特征证实了完整的热传导途径的形成。所开发的薄膜也显示出在微电子器件中作为散热介质的潜在应用前景。

本文引用格式

ZHAO Chenggong, LI Yifan, MA Manping, KAN Ankang, XIE Huaqing, YU Wei . Tailoring Polyimide Chain by Melamine-Cyanurate Supramolecule via a Molecular Welding Strategy Achieving Superior Thermal Conductivity[J]. 热科学学报, 2023 , 32(4) : 1558 -1568 . DOI: 10.1007/s11630-023-1810-2

Abstract

Polyimide (PI) films are widely used in printed circuit boards, electronic packaging, interlayer media, display panels, and other fields. Improving the thermal conductivity of PI film is of great significance to promote effective heat removal in microelectronic devices. Herein, melamine cyanurate (MC) with multiple hydrogen bonds was designed and introduced into water-soluble polyamide acid (Ws-PAA) solution via an in-situ co-precipitation method. The MC supramolecule forms a chemical bond at the end of the PI chain, while also confines the adjacent chains through hydrogen bonds and π-π conjugation, functioning as a tailor to improve the chain arrangement via this molecular welding strategy. The tailored PI/MC films exhibit anisotropic thermal conductivity (TC): the in-plane TC can reach 0.93 W/(m·K) while the through-plane TC is 0.60 W/(m·K). Micromorphology and structural characterizations confirm the formation of complete heat conduction pathways. The developed films also show potential application prospects functioning as heat dissipation media in microelectronic devices.

参考文献

[1] An, Z., Jia, L., Ding, Y., Dang C., Li X., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017, 26: 391–412. 
[2] Zeng Z., Zeng L., Wang R., Feng G., Molecular understanding of heat transfer in ionic-liquid-based electric double layers. Journal of Thermal Science, 2023, 32: 192–205.
[3] Yeh L.T., Review of heat transfer technologies in electronic equipment. Journal of Electronic Packaging, 1995, 117(4): 333–339.
[4] Ruan K., Shi X., Guo Y., Gu J., Interfacial thermal resistance in thermally conductive polymer composites: A review. Composites Communications, 2020, 22: 100518.
[5] Zhao, C., Li, Y., Liu, Y., Xie H., Yu W., A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices. Advanced Composites and Hybrid Materials, 2023, 6: 27.
[6] Zhou Y., Foreword to the focus issue: Composite materials for functional electronic devices. Science and Technology of Advanced Materials, 2022, 23(1): 617–618.
[7] Ma P., Dai C., Wang H., Li Z., Liu H., Li W., Yang C., A review on high temperature resistant polyimide films bearing heterocyclic structures and their applications. Composites Communications, 2019, 16: 84–93.
[8] Sun Q., Xue Z., Chen Y., Xia R., Wang J., Xu S., Zhang J., Yue Y., Modulation of the thermal transport of micro-structured materials from 3D printing. International Journal of Extreme Manufacturing, 2022, 4: 015001.
[9] Gao J., Xie D., Wang X., Zhang X., Yue Y., High thermal conductivity of free-standing skeleton in graphene foam. Applied Physics Letters, 2022, 117: 251901.
[10] Wu H., Gao J., Xiong Y., Zhu Q., Yue Y., Tuning thermal conductance of graphene-polyethylene composites via graphene inclination and curvature. International Journal of Heat and Mass Transfer, 2021, 178: 121634.
[11] Haruki M., Thermal conductivity for polymer composite materials: Recent advances in polyimide materials. Journal of Chemical Engineering of Japan, 2021, 54(5): 186–194.
[12] Duan G., Cao Y., Quan J., Hu Z., Wang Y., Yu J., Zhu J., Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength. Journal of Materials Science, 2020, 55(19): 8170–8184.
[13] Liu D., Ma C., Chi H., Li S., Zhang P., Dai P., Enhancing thermal conductivity of polyimide composite film by electrostatic self-assembly and two-step synergism of Al2O3 microspheres and BN nanosheets. RSC Advances, 2020, 10(69): 42584–42595.
[14] Wang Y., Zhang X., Ding X., Li Y., Zhang P., Shu M., Zhang Q., Gong Y., Zheng K., Wu B., Tian X., Enhanced thermal conductivity of carbon nitride-doped graphene/ polyimide composite film via a “deciduous-like” strategy. Composites Science and Technology, 2021, 205: 108693.
[15] Mehra N., Mu L., Ji T., Yang X., Kong J., Gu J., Zhu J., Thermal transport in polymeric materials and across composite interfaces. Applied Materials Today, 2018, 12: 92–130.
[16] Ruan K., Guo Y., Gu J., Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules, 2021, 54(10): 4934– 4944.
[17] Xiang L., Fang Y., Xu K., Zheng Z., Dong J., Xie Y., Molecular alignment induced high thermal conductivity in amorphous/low crystalline polyimide fibers. International Journal of Heat and Mass Transfer, 2022, 193: 122959.
[18] Mehra N., Jeske M., Yang X., Gu J., Kashfipour M.A., Li Y., Baughman J.A., Zhu J., Hydrogen-bond driven self-assembly of two-dimensional supramolecular melamine-cyanuric acid crystals and its self-alignment in polymer composites for enhanced thermal conduction. ACS Applied Polymer Materials, 2019, 1(6): 1291–1300.
[19] Wang Y., Zhang X., Ding X., Zhang P., Shu M., Zhang Q., Gong Y., Zheng K., Tian X., Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. Composites Part B: Engineering, 2020, 199: 108267.
[20] Liu P., Li X., Min P., Chang X., Shu C., Ding Y., Yu Z.Z., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Letters, 2020, 13(1): 22.
[21] Sun J., Xu J., Grafmueller A., Huang X., Liedel C., Algara-Siller G., Willinger M., Yang C., Fu Y., Wang X., Shalom M., Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Applied Catalysis B: Environmental, 2017, 205: 1–10.
[22] Ou X., Chen S., Lu X., Lu Q., Enhancement of thermal conductivity and dimensional stability of polyimide/ boron nitride films through mechanochemistry. Composites Communications, 2021, 23: 100549.
[23] Li Y., Liu K., Xiao R., Preparation and characterization of flame-retarded polyamide 66 with melamine cyanurate by in situ polymerization. Macromolecular Research, 2017, 25(8): 779–785.
[24] Li Y., Mehra N., Ji T., Yang X., Mu L., Gu J., Zhu J., The stiffness-thermal conduction relationship at the composite interface: the effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy. Nanoscale, 2018, 10(4): 1695–1703.
[25] Xiao H., Huang Z.X., Zhang Z.P., Rong M.Z., Zhang M.Q., Highly thermally conductive flexible copper clad laminates based on sea-island structured boron nitride/polyimide composites. Composites Science and Technology, 2021, 109087.
[26] Ding D., Zou M., Wang X., Qin G., Zhang S., Chan S.Y., Meng Q., Liu Z., Zhang Q., Chen Y., Thermal conductivity of polydisperse hexagonal BN/polyimide composites: Iterative EMT model and machine learning based on first principles investigation. Chemical Engineering Journal, 2022, 437: 135438.
[27] Zhang F., Feng Y., Qin M., Gao L., Li Z., Zhao F., Zhang Z., Lv F., Feng W., Stress controllability in thermal and electrical conductivity of 3D elastic graphene – crosslinked carbon nanotube sponge/polyimide nanocomposite. Advanced Functional Materials, 2019, 29(25): 1901383.
[28] Cao L., Wang J., Dong J., Zhao X., Li H.-B., Zhang Q., Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres. Composites Part B: Engineering, 2020, 188: 107882.
[29] Li Y., Zhang Y., Liu Y., Xie H., Yu W., A comprehensive review for micro/nanoscale thermal mapping technology based on scanning thermal microscopy. Journal of Thermal Science, 2022, 31(4): 976–1007.
[30] Li Y., Mehra N., Ji T., Zhu J., Realizing the nanoscale quantitative thermal mapping of scanning thermal microscopy by resilient tip-surface contact resistance models. Nanoscale Horizons, 2018, 3(5): 505–516.
[31] Liu Z., Feng Y., Qiu L., Near-field radiation analysis and thermal contact radius determination in the thermal conductivity measurement based on SThM open-loop system. Applied Physics Letter, 2022, 120(11): 113506.
[32] Chen W., Feng Y., Qiu L., Zhang X., Scanning thermal microscopy method for thermal conductivity measurement of a single SiO2 nanoparticle. International Journal of Heat and Mass Transfer, 2020, 154: 119750.
[33] Li Y., Zhang T., Zhang Y., Zhao C., Zheng N., Yu W., A comprehensive experimental study regarding size dependence on thermal conductivity of graphene oxide nanosheet. International Communications in Heat and Mass Transfer, 2022, 130: 105764.
[34] Mehra N., Li Y., Zhu J., Small organic linkers with hybrid terminal groups drive efficient phonon transport in polymers. The Journal of Physical Chemistry C, 2018, 122(19): 10327–10333. 
[35] Mu L., He J., Li Y., Ji T., Mehra N., Shi Y., Zhu J., The molecular origin of efficient phonon transfer in modulated polymer blends: effect of hydrogen bonding on polymer coil size and assembled microstructure. The Journal of Physical Chemistry C, 2017, 121(26): 14204– 14212.
[36] Mu L., Li Y., Mehra N., Ji T., Zhu J., Expedited phonon transfer in interfacially constrained polymer chain along self-organized amino acid crystals. ACS applied materials & interfaces, 2017, 9(13): 12138–12145.
[37] Mehra N., Mu L., Ji T., Li Y., Zhu J., Moisture driven thermal conduction in polymer and polymer blends. Composites Science and Technology, 2017, 151: 115– 123.
[38] Mehra N., Li Yi., Yang X., Li J., Kashfipour M.A., Gu J., Zhu J., Engineering molecular interaction in polymeric hybrids: Effect of thermal linker and polymer chain structure on thermal conduction. Composites Part B: Engineering, 2019, 166: 509–515.
[39] Li Y., Lin H., Mehra N., Identification of thermal barrier areas in graphene oxide/boron nitride membranes by scanning thermal microscopy: thermal conductivity improvement through membrane assembling. ACS Applied Nano Materials, 2021, 4(4): 4189–4198.
[40] Lu X., Qiao X., Yang T., Sun K., Chen X., Preparation and properties of environmental friendly nonhalogen flame retardant melamine cyanurate/nylon 66 composites. Journal of Applied Polymer Science, 2011, 122(3): 1688–1697.
[41] Clingerman M.L., King J.A., Schulz K.H., Meyers J.D., Evaluation of electrical conductivity models for conductive polymer composites. Journal of Applied Polymer Science, 2002, 83: 1341–1356.
[42] Yang G., Xing R., Li Y., Ma C., Cheng B., Yan J., Zhuang X., Toward high-performance multifunctional electronics: Knitted fabric-based composite with electrically conductive anisotropy and self-healing capacity. Chemical Engineering Journal, 2021, 426: 131931.
[43] Joyee E.B., Lu L., Pan Y., Analysis of mechanical behavior of 3D printed heterogeneous particle-polymer composites. Composites Part B, 2019, 173: 106840.

文章导航

/