[1] Ross Jr R., Boyle R., Kittel P., NASA space cryocooler programs—a 2003 overview. AIP Conference Proceedings, 2004, 710(1): 1197–1204.
[2] Coulter D.R., Ross Jr R.G., Boyle R.F., et al., NASA advanced cyrocooler technology development program. Proceeding SPIE 4850, IR Space Telescopes and Instruments, 2003, 4850: 1020–1028. DOI: https://doi.org/10.1117/12.462788
[3] Wang B., Gan Z.H., A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications. Progress in Aerospace Sciences, 2013, 61: 43–70.
[4] Ade P.A.R., Aghanim N., Alves M.I.R., et al., Planck 2013 results. I. Overview of products and scientific results. Astronomy & Astrophysics, 2014, 571: A1.
[5] Bradshaw T.W., Orlowska A.H., Technology developments on the 4 K cooling system for “Planck” and FIRST. 6th European Symposium on Space Environmental Control Systems, Noordwijk, Netherlands, 1997, 400: 465–470.
[6] Shinozaki K., Ogawa H., Nakagawa T., et al., Mechanical cooler system for the next-generation infrared space telescope SPICA. Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Edinburgh, United Kingdom, 2016, 9904: 1276–1283.
[7] Banks K., Larson M., Aymergen C., et al., James webb space telescope mid-infrared instrument cooler systems engineering. Proceeding SPIE 7017, Modeling, Systems Engineering, and Project Management for Astronomy III, Marseille, France, 2008, 7017: 93–102. DOI: https://doi.org/10.1117/12.791925
[8] Lamarre J.M., Puget J.L., Ade P.A.R., et al., Planck pre-launch status: The HFI instrument, from specification to actual performance. Astronomy & Astrophysics, 2010, 520: A9.
[9] Lundquist R.A., Balzano V., Davila P., et al., Status of the James Webb Space Telescope integrated science instrument module. Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, Amsterdam, Netherlands, 2012, 8442: 947–972.
[10] Orlowska A.H., Bradshaw T.W., Hieatt J., Development status of a 2.5 K–4 K closed-cycle cooler suitable for space use. Cryocoolers, 1995, 8: 517–524.
[11] Inatani J., Narasaki K., Tsunematsu S., et al., Mechanical cooler and cryostat for submillimeter SIS mixer receiver in space. Sensors, Systems, and Next-Generation Satellites V, Toulouse, France, 2001, 4540: 197–208.
[12] Narasaki K., Tsunematsu S., Yajima S., et al., Development of cryogenic system for SMILES. AIP Conference Proceedings, 2004, 710(1): 1785–1796.
[13] Prouvé T., Duval J.M., Charles I., et al., Athena X-IFU 300 K–50 mK cryochain demonstrator cryostat. Cryogenics, 2018, 89: 85–94.
[14] Liu S., Sha X., Ding L., Investigation of the frequency and stroke characteristics of two-stage valved linear compressor in a 4 K JT cryocooler. Applied Thermal Engineering, 2020, 176: 115432.
[15] Hasegawa Y., Nakamura D., Murata M., et al., High- precision temperature control and stabilization using a cryocooler. Review of Scientific Instruments, 2010, 81(9): 094901.
[16] Nakamura D., Hasegawa Y., Murata M., et al., Reduction of temperature fluctuation within low temperature region using a cryocooler. Review of Scientific Instruments, 2011, 82(4): 044903.
[17] Jambusaria M.H., Burkic A.A., Ellis M.J., et al., Microsat cryocooler system. Infrared Technology and Applications XLI, Maryland, United States, 2015, 9451: 549–561.
[18] Freeman J.J., Murphy J.B., Kirkconnell C.S., Experimental demonstration of cryocooler electronics with multiple mechanical cryocooler types. Infrared Technology and Applications XXXVIII, Maryland, United States, 2012, 8353: 668–679.
[19] Ding L., Zhang H., Sha X., et al., Study on the establishing-process of piston offset in the helium valved linear compressor under different operating parameters. International Journal of Refrigeration, 2022, 133: 80–89.
[20] Narasaki K., Tsunematsu S., Ootsuka K., et al., Development of 1 K-class mechanical cooler for SPICA. Cryogenics, 2004, 44(6–8): 375–381.
[21] Crook M., Bradshaw T., Gilley G., et al., Development of a 2 K Joule-Thomson closed-cycle cryocooler. Cryocoolers, 2016, 19: 9–18.
[22] Maytal B.Z., Pfotenhauer J.M., Miniature Joule-Thomson cryocooling: principles and practice. Springer Science & Business Media, New York, 2012.
[23] Chen Z., Liu S., Wu Y., et al., Performance testing and temperature fluctuations of a 4.5 K@ 150 mW Joule-Thomson closed cycle cryocooler for space applications. IOP Conference Series: Materials Science and Engineering, 2022, 1240(1): 012017.
[24] Van Sciver S.W., Timmerhaus K.D., Clark A.F., Helium cryogenics. Springer Science & Business Media, New York, 2012.
[25] Ortiz Vega D.O., A new wide range equation of state for helium-4. Texas A & M University, Texas, United States, 2013.
[26] Onufrena A., Koettig T., Bremer J., et al., Design of a compact mesh-based high-effectiveness counter-flow heat exchanger and its integration in remote cooling systems. International Journal of Heat and Mass Transfer, 2022, 183: 122107.
[27] Chen Z., Cui X., Liu S., et al., Study on cooling capacity characteristics of a helium Joule-Thomson cryocooler. Applied Thermal Engineering, 2023, 221: 119820.
[28] Xin R.C., Ebadian M.A., The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes. ASME Journal of Heat and Mass Transfer, 1997, 119(3): 467–473.
[29] Hardik B.K., Baburajan P.K., Prabhu S.V., Local heat transfer coefficient in helical coils with single phase flow. International Journal of Heat and Mass Transfer, 2015, 89: 522–538.