Numerical Investigation on the Effects of Design Parameters and Operating Conditions on the Electrochemical Performance of Proton Exchange Membrane Water Electrolysis

展开
  • 1. Key Laboratory of Power Station Energy Transfer Conversion and System of MOE, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
    2. Mechanical Power Engineering Department, Faculty of Engineering - Mattaria, Helwan University, Cairo 11718, Egypt

网络出版日期: 2023-11-26

基金资助

This study has been supported by the Science and Technology Projects of State Grid, State Grid Corporation of China (Research on the key technologies of multi-energy complementary distributed energy system).

Numerical Investigation on the Effects of Design Parameters and Operating Conditions on the Electrochemical Performance of Proton Exchange Membrane Water Electrolysis

Expand
  • 1. Key Laboratory of Power Station Energy Transfer Conversion and System of MOE, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
    2. Mechanical Power Engineering Department, Faculty of Engineering - Mattaria, Helwan University, Cairo 11718, Egypt

Online published: 2023-11-26

Supported by

This study has been supported by the Science and Technology Projects of State Grid, State Grid Corporation of China (Research on the key technologies of multi-energy complementary distributed energy system).

摘要

质子交换膜电解池 (PEMEC) 具有纯度高、功耗低特点,是一种极具发展前景的制氢技术。本文基于计算流体力学和有限元方法,利用三维非等温模型计算 PEMEC 性能,并研究膜/催化剂 (MEM/CL) 界面处电流密度、物质浓度和温度分布规律。此外,还研究了不同操作条件和不同设计参数对极化曲线、电能需求和电池效率的影响机制。研究结果表明,电流密度、氢浓度、氧浓度和温度的最大值位于中心肋下方并沿着出口的方向增加,而水浓度的最高值则位于通道下方并沿着出口方向减小。研究发现气体扩散层 (GDL) 厚度的增加有利于 MEM/CL 界面非均匀分布的减小。还发现将工作温度从 323 K 提高到 363 K ,可以降低电池电压和能量消耗。氢离子扩散随着阴极压力的增加而降低,这将增加能量消耗并降低电池效率。此外,增加 GDL 和膜的厚度会增加能量消耗并降低电效率,然而增加 GDL 孔隙率会降低电能需求并提高电池效率,因此建议使用薄的膜和孔隙率大的GDL。

本文引用格式

HASSAN Alamir H., WANG Xueye, LIAO Zhirong, XU Chao . Numerical Investigation on the Effects of Design Parameters and Operating Conditions on the Electrochemical Performance of Proton Exchange Membrane Water Electrolysis[J]. 热科学学报, 2023 , 32(6) : 1989 -2007 . DOI: 10.1007/s11630-023-1767-1

Abstract

Proton exchange membrane electrolysis cell (PEMEC) is one of the most promising methods to produce hydrogen at high purity and low power consumption. In this study, a three-dimensional non-isothermal model is used to simulate the cell performance of a typical PEMEC based on computational fluid dynamics (CFD) with the finite element method. Then, the model is used to investigate the distributions of current density, species concentration, and temperature at the membrane/catalyst (MEM/CL) interface. Also, the effects of operating conditions and design parameters on the polarization curve, specific electrical energy demand, and electrical cell efficiency are studied. The results show that the maximum distribution of current density, hydrogen concentration, oxygen concentration, and temperature occur beneath the core ribs and increase towards the channel outlet, while the maximum water concentration distribution happens under the channel and decreases towards the channel exit direction. The increase in gas diffusion layer (GDL) thickness reduces the uneven distribution of the contour at the MEM/CL interface. It is also found that increasing the operating temperature from 323 K to 363 K reduces the cell voltage and specific energy demand. The hydrogen ion diffusion degrades with increasing the cathode pressure, which increases the specific energy demand and reduces the electrical cell efficiency. Furthermore, increasing the thickness of the GDL and membrane rises the specific energy demand and lowers the electrical efficiency, but increasing GDL porosity reduces the specific electrical energy demand and improves the electrical cell efficiency; thus using a thin membrane and GDL is recommended.

参考文献

[1] Nagasawa K., Kato A., Nishiki Y., Matsumura Y., Atobe M.,  Mitsushima S., The effect of flow-field structure in toluene hydrogenation electrolyzer for energy carrier synthesis system. Electrochimica Acta, 2017, 246: 459–465. DOI: 10.1016/j.electacta.2017.06.081.
[2] Hall D., Lvov S., Modeling a CuCl(aq)/HCl(aq) electrolyzer using thermodynamics and electrochemical kinetics. Electrochimica Acta, 2016, 190: 1167–1174. DOI: 10.1016/j.electacta.2015.12.184.
[3] Espinosa-López M., Darras C., Poggi P., Glises R., Baucour P., Rakotondrainibe A., Besse S., Serre-Combe P., Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer. Renewable Energy, 2018, 119: 160–173. 
DOI: 10.1016/j.renene.2017.11.081.
[4] Ozden E., Tari I., PEM fuel cell degradation effects on the performance of a stand-alone solar energy system. International Journal of Hydrogen Energy, 2017, 42(18): 13217–13225. DOI: 10.1016/j.ijhydene.2017.04.017.
[5] Selamet Ö., Becerikli F., Mat M., Kaplan Y., Development and testing of a highly efficient proton exchange membrane (PEM) electrolyzer stack. International Journal of Hydrogen Energy, 2011, 36(17): 11480–11487. DOI: 10.1016/j.ijhydene.2011.01.129.
[6] Toghyani S., Afshari E., Baniasadi E., Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells. Electrochimica Acta, 2018, 290: 506–519. DOI: 10.1016/j.electacta.2018.09.106.
[7] Abdol Rahim A., Tijani A., Kamarudin S., Hanapi S., An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport. Journal of Power Sources, 2016, 309: 56–65. 
DOI: 10.1016/j.jpowsour.2016.01.012.
[8] Clarke R., Giddey S., Badwal S., Stand-alone PEM water electrolysis system for fail safe operation with a renewable energy source. International Journal of Hydrogen Energy, 2010, 35(3): 928–935. 
DOI: 10.1016/j.ijhydene.2009.11.100.
[9] Millet P., Mbemba N., Grigoriev S., Fateev V. , Aukauloo A., Etiévant C., Electrochemical performances of PEM water electrolysis cells and perspectives. International Journal of Hydrogen Energy, 2011, 36(6): 4134–4142. 
DOI: 10.1016/j.ijhydene.2010.06.105.
[10] Shiva Kumar S., Himabindu V., Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies, 2019, 2(3): 442–454. 
DOI: 10.1016/j.mset.2019.03.002.
[11] Santarelli M., Medina P., Calì M., Fitting regression model and experimental validation for a high pressure PEM electrolyzer. International Journal of Hydrogen Energy, 2009, 34(6): 2519–2530. 
DOI: 10.1016/j.ijhydene.2008.11.036.
[12] Marangio F., Santarelli M., Calì M., Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen Energy, 2009, 34(3): 1143–1158.
DOI: 10.1016/j.ijhydene.2008.11.083.
[13] Dale N., Mann M., Salehfar H., Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics. Journal of Power Sources, 2008, 185(2): 1348–1353. DOI: 10.1016/j.jpowsour.2008.08.054.
[14] Grigoriev S., et al., Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis. International Journal of Hydrogen Energy, 2009, 34(14): 5986–5991. 
DOI: 10.1016/j.ijhydene.2009.01.047.
[15] Sartory M., et al., Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar. International Journal of Hydrogen Energy, 2017, 42(52): 30493–30508. 
DOI: 10.1016/j.ijhydene.2017.10.112.
[16] Schalenbach M., Carmo M., Fritz D., Mergel J., Stolten D., Pressurized PEM water electrolysis: Efficiency and gas crossover. International Journal of Hydrogen Energy, 2013, 38(35): 14921–14933. 
DOI: 10.1016/j.ijhydene.2013.09.013.
[17] Kim H., Park M., Lee K., One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production. International Journal of Hydrogen Energy, 2013, 38(6): 2596–2609. 
DOI: 10.1016/j.ijhydene.2012.12.006.
[18] Awasthi A., Scott K., Basu S., Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 2011, 36(22): 14779–14786. 
DOI: 10.1016/j.ijhydene.2011.03.045.
[19] Kaya M., Demir N., Numerical investigation of PEM water electrolysis performance for different oxygen evolution electrocatalysts. Fuel Cells, 2017, 17(1): 37–47. DOI: 10.1002/fuce.201600216.
[20] Onda K., Murakami T., Hikosaka T., Kobayashi M., Notu R., Ito K., Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell. Journal of The Electrochemical Society, 2002, 149(8): A1069. 
DOI: 10.1149/1.1492287.
[21] Han B., Mo J., Kang Z., Zhang F., Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells. Electrochimica Acta, 2016, 188: 317–326. DOI: 10.1016/j.electacta.2015.11.139.
[22] Toghyani S., Baniasadi E., Afshari E., Numerical simulation and exergoeconomic analysis of a high temperature polymer exchange membrane electrolyzer. International Journal of Hydrogen Energy, 2019, 44(60): 31731–31744. DOI: 10.1016/j.ijhydene.2019.10.087.
[23] Toghyani S., Afshari E., Baniasadi E., Atyabi S., Naterer G., Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer. Energy, 2018, 152: 237–246. DOI: 10.1016/j.energy.2018.03.140.
[24] Ito K., et al., Analysis and visualization of water flow impact on hydrogen production efficiency in solid polymer water electrolyzer under high-pressure condition. International Journal of Hydrogen Energy, 2015, 40(18): 5995–6003. DOI: 10.1016/j.ijhydene.2015.03.045.
[25] Olesen A., Rømer C., Kær S., A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell. International Journal of Hydrogen Energy, 2016, 41(1): 52–68. DOI: 10.1016/j.ijhydene.2015.09.140.
[26] Rahim A., Tijani A., Modeling and analysis the effects of temperature and pressure on the gas-crossover in polymer electrolyte membrane electrolyzer. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2016, 2(1): 1–7.
[27] Zhang H., Su S., Lin G., Chen J., Efficiency calculation and configuration design of a PEM electrolyzer system for hydrogen production. International Journal of Electrochemical Science, 2012, 7(5): 4143–4157.
[28] Toghyani S., Afshari E., Baniasadi E., Atyabi S., Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer. Electrochimica Acta, 2018, 267: 234–245. 
DOI: 10.1016/j.electacta.2018.02.078.
[29] Wang Z., Xu C., Wang X., Liao Z., Du X., Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell. Science China Technological Sciences, 2021, 64(7): 1555–1566. DOI: 10.1007/s11431-021-1810-9.
[30] Zinser A., Papakonstantinou G., Sundmacher K., Analysis of mass transport processes in the anodic porous transport layer in PEM water electrolysers. International Journal of Hydrogen Energy, 2019, 44(52): 28077–28087. 
DOI: 10.1016/j.ijhydene.2019.09.081.
[31] Ferrero D., Santarelli M., Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells. Energy Conversion and Management, 2017, 148: 16–29. DOI: 10.1016/j.enconman.2017.05.059.
[32] Ito H., Maeda T., Nakano A., Kato A., Yoshida T., Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochimica Acta, 2013, 100: 242–248. DOI: 10.1016/j.electacta.2012.05.068.
[33] Ruiz D., Sasmito A., Shamim T., Numerical investigation of the high temperature PEM electrolyzer: Effect of flow channel configurations. ECS Transaction, 2013, 58(2): 99–112. DOI: 10.1149/05802.0099ecst.
[34] Chippar P., Ju H., Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells. International Journal of Hydrogen Energy, 2013, 38(18): 7704–7714. DOI: 10.1016/j.ijhydene.2012.07.123.
[35] Medina P., Santarelli M., Analysis of water transport in a high pressure PEM electrolyzer. International Journal of Hydrogen Energy, 2010, 35(11): 5173–5186. 
DOI: 10.1016/j.ijhydene.2010.02.130.
[36] Sun C., Hsiau S., Effect of electrolyte concentration difference on hydrogen production during pem electrolysis. Journal of Electrochemical Science and Technology, 2018, 9(2): 99–108. 
DOI: 10.5229/JECST.2018.9.2.99.
[37] Gurau V., Liu H., Kakaç S., Two-dimensional model for proton exchange membrane fuel cells. American Institute of Chemical Engineers Journals, 1998, 44(11): 2410–2422. DOI: 10.1002/aic.690441109.
[38] Olesen A., Frensch S., Kær S., Towards uniformly distributed heat, mass and charge: A flow field design study for high pressure and high current density operation of PEM electrolysis cells. Electrochimica Acta, 2019,   293: 476–495. 
DOI: 10.1016/j.electacta.2018.10.008.
[39] García-Valverde R., Espinosa N., Urbina A., Simple PEM water electrolyser model and experimental validation. International Journal of Hydrogen Energy, 2012, 37(2): 1927–1938. DOI: 10.1016/j.ijhydene.2011.09.027.
[40] Falcão D., Oliveira V., Rangel C., Pinho C., Pinto A., Water transport through a PEM fuel cell: A one-dimensional model with heat transfer effects. Chemical Engineering Science, 2009, 64(9): 2216–2225. DOI: 10.1016/j.ces.2009.01.049.
[41] Dedigama I., et al., In situ diagnostic techniques for characterisation of polymer electrolyte membrane water electrolysers - Flow visualisation and electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 2014, 39(9): 4468–4482. 
DOI: 10.1016/j.ijhydene.2014.01.026.
[42] Millet P., Water electrolysis using eme technology: electric potential distribution inside a nafion membrane during electrolysis. Electrochimica Acta, 1994, 39(17): 2501–2506. 
DOI: 10.1016/0013-4686(94)00261-4.
[43] Li Y., Yang G., Yu S., Kang Z., Talley D.,  Zhang F., Direct thermal visualization of micro-scale hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Energy Conversion and Management, 2019, 199(8): 1–6. 
DOI: 10.1016/j.enconman.2019.111935.
[44] Sakai T., Takenaka H., Wakabayashi N., Kawami Y., Torikai E., Preparation of Nafion-metal fine particles composite membrane. Journal of Membrane Science, 1987, 31: 227–234. 
DOI: 10.1016/S0376-7388(00)82229-2.

文章导航

/