Comparison of Thermal Performance between Annular Fins and Longitudinal Fins in Latent Heat Storage Unit

  • ZHU Yuxi ,
  • QIU Yan
展开
  • School of Energy and Power Engineering, Shandong University, Ji’nan 250061, China

网络出版日期: 2023-11-22

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Comparison of Thermal Performance between Annular Fins and Longitudinal Fins in Latent Heat Storage Unit

  • ZHU Yuxi ,
  • QIU Yan
Expand
  • School of Energy and Power Engineering, Shandong University, Ji’nan 250061, China

Online published: 2023-11-22

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

摘要

翅片作为一种简单有效的强化传热方法,在潜热储热系统中得到了广泛的应用。然而,环形翅片和纵向翅片的选择一直存在争议。本文对相变材料在具有相同体积和三维占据空间的环形翅片和纵向翅片潜热储存装置内的融化过程进行了数值模拟。结合翅片结构,研究了自然对流、放置方式和传热流体入口方向对融化过程的影响。结果表明,环形翅片结构的融化时间始终比纵向翅片结构的融化时间少10%,说明环形翅片结构在潜热蓄热装置中的优越性。垂直放置时传热流体入口在底部的环形翅片结构融化时间更短。最后,提出了垂直放置时传热流体入口在底部结构的液相分数的关联式。

本文引用格式

ZHU Yuxi , QIU Yan . Comparison of Thermal Performance between Annular Fins and Longitudinal Fins in Latent Heat Storage Unit[J]. 热科学学报, 2023 , 32(3) : 1227 -1238 . DOI: 10.1007/s11630-023-1731-0

Abstract

As a simple and effective method of heat transfer enhancement, fins are widely used in latent heat storage systems. However, the choice of annular fins and longitudinal fins has always been controversial. In this paper, the melting process of phase change material (PCM) in annular fins and longitudinal fins latent heat storage units with the same volume is numerically simulated. To ensure the same thermal penetration, three-dimensional spaces occupied with fins are specially controlled to be the same. Combined with finned structures, the effects of natural convection (NC), placement mode and heat transfer fluid (HTF) inlet direction on the melting process are studied. The results show that the melting time in annular finned structure is always 10% less than that in longitudinal finned structure, which demonstrates the superior of the annular fins in the latent heat storage unit. The melting time is the shortest in vertical unit with annular fins and HTF inlet at the bottom. Additionally, the correlation formulas of the liquid fraction are proposed in the vertical unit with HTF inlet at the bottom.

参考文献

[1] Bouhal T., El Rhafiki T., Kousksou T., Jamil A., Zeraouli Y., PCM addition inside solar water heaters: Numerical comparative approach. Journal of Energy Storage, 2018, 19: 232–246.
[2] Mehryan S.A.M., Ghalambaz M., Sasani Gargari L., Hajjar A., Sheremet M., Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. Journal of Energy Storage, 2020, 28: 101236. 
[3] Sarı A., Alkan C., Bilgin C., Micro/nano encapsulation of some paraffin eutectic mixtures with poly (methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties. Applied Energy, 2014, 136: 217–227.
[4] Heyhat M.M., Mousavi S., Siavashi M., Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. Journal of Energy Storage, 2020, 28: 101235.
[5] Li F., Jafaryar M., Hajizadeh M.R., Bach Q.V., Performance of ventilation system involving thermal storage unit considering porous media. Journal of Energy Storage, 2020, 31: 101709.
[6] Mohammed H.I., Talebizadehsardari P., Mahdi J.M., Arshad A., Sciacovelli A., Giddings D., Improved melting of latent heat storage via porous medium and uniform Joule heat generation. Journal of Energy Storage, 2020, 31: 101747.
[7] Shahsavar A., Al-Rashed A.A.A.A., Entezari S., Sardari P.T., Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium. Energy, 2019, 171: 751–769.
[8] Borhani S.M., Hosseini M.J., Ranjbar A.A., Bahrampoury R., Investigation of phase change in a spiral-fin heat exchanger. Applied Mathematical Modelling, 2019, 67: 297–314.
[9] Jmal I., Baccar M., Numerical investigation of PCM solidification in a finned rectangular heat exchanger including natural convection. International Journal of Heat and Mass Transfer, 2018, 127: 714–727.
[10] Kumar R., Verma P., An experimental and numerical study on effect of longitudinal finned tube eccentric configuration on melting behaviour of lauric acid in a horizontal tube-in-shell storage unit. Journal of Energy Storage, 2020, 30: 101396.
[11] Rathod M.K., Banerjee J., Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins. Applied Thermal Engineering, 2015, 75: 1084–1092.
[12] Sciacovelli A., Gagliardi F., Verda V., Maximization of performance of a PCM latent heat storage system with innovative fins. Applied Energy, 2015, 137: 707–715.
[13] Al-Abidi A.A., Mat S., Sopian K., Sulaiman M.Y., Mohammad A.T., Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. International Journal of Heat and Mass Transfer, 2013, 61: 684–695.
[14] Cao X.L., Yuan Y.P., Xiang B., Sun L.L., Zhang X.X., Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures. Energy and Buildings, 2018, 158: 384–392.
[15] Ye W.B., Enhanced latent heat thermal energy storage in the double tubes using fins. Journal of Thermal Analysis and Calorimetry, 2016, 128: 533–540.
[16] Yuan Y., Cao X., Xiang B., Du Y., Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage. Solar Energy, 2016, 136: 365–378.
[17] Lacroix M., Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. International Journal of Heat and Mass Transfer, 1993, 36: 2083–2092.
[18] Ismail K.A.R., Lino F.A.M., Fins and turbulence promoters for heat transfer enhancement in latent heat storage systems. Experimental Thermal and Fluid Science, 2011, 35: 1010–1018.
[19] Pu L., Zhang S., Xu L., Li Y., Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit. Applied Thermal Engineering, 2020, 166: 114753.
[20] Yang X., Lu Z., Bai Q., Zhang Q., Jin L., Yan J., Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Applied Energy, 2017, 202: 558–570.
[21] Agyenim F., Eames P., Smyth M., A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Solar Energy, 2009, 83: 1509–1520.
[22] Seddegh S., Wang X., Henderson A.D., A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Applied Thermal Engineering, 2016, 93: 348–358.
[23] Han G.S., Ding H.S., Huang Y., Tong L.G., Ding Y.L., A comparative study on the performances of different shell-and-tube type latent heat thermal energy storage units including the effects of natural convection. International Communications in Heat and Mass Transfer, 2017, 88: 228–235.
[24] Mehta D.S., Solanki K., Rathod M.K., Banerjee J., Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation. Journal of Energy Storage, 2019, 23: 344–362.
[25] Longeon M., Soupart A., Fourmigué J.F., Bruch A., Marty P., Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, 2013, 112: 175–184.
[26] Brent A.D., Voller V.R., Reid K.J., Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, 1988, 13(3): 297–318.
[27] Voller V.R., Prakash C., A fixed grid numerical modeling methodology for convection-diffusion mushy region phase change problems. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709–1719.
[28] Hosseini M.J., Ranjbar A.A., Sedighi K., Rahimi M., A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. International Communications in Heat and Mass Transfer, 2012, 39: 1416–1424.
[29] Ho C.J., Viskanta R., Heat transfer during melting from an isothermal vertical wall. Journal of Heat Transfer-Transactions of the ASME, 1984, 106(1): 12– 19.
[30] Shatikian V., Ziskind G., Letan R., Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. International Journal of Heat and Mass Transfer, 2008, 51: 1488–1493.
文章导航

/