燃烧和反应

Thermal Inertia of 330 MW Circulating Fluidized Bed Boiler during Load Change

展开
  • 1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    2. Wuhan Yongping Science and Technology Co. Ltd., Wuhan 430000, China

网络出版日期: 2023-10-23

基金资助

This research was supported by National Key R&D Program of China (2022YFB4100301).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Thermal Inertia of 330 MW Circulating Fluidized Bed Boiler during Load Change

Expand
  • 1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    2. Wuhan Yongping Science and Technology Co. Ltd., Wuhan 430000, China

Online published: 2023-10-23

Supported by

This research was supported by National Key R&D Program of China (2022YFB4100301).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

摘要

随着新能源的大规模装机,新能源消纳问题愈发严峻,电力系统对调峰及高灵活调节能力资源的需求显著增加。我国的资源禀赋决定了采用燃煤机组调峰及灵活发电在经济性、可靠性和国家能源安全方面具有天然优势。循环流化床机组是燃煤机组的重要组成部分,其本身具有很好的负荷适应性,具有很好的调峰特性,然而由于其炉内有大量的耐磨耐火材料、床料、循环物料、工质以及受热面金属等,锅炉运行过程中积蓄大量热量,形成了循环流化床锅炉的热惯性,成为其变负荷速率提高的主要瓶颈之一,因此,要进一步提高循环流化床机组的负荷响应速率,首先应对其热惯性特性开展系统研究。本文提出采用单位发电功率变化对应的锅炉蓄热量变化量来表征锅炉的热惯性。通过现场采集330 MW 循环流化床锅炉的运行数据,对热惯性进行分析,从而揭示炉内各蓄热体对锅炉总热惯性的影响规律以及在机组不同负荷区间变负荷过程中热惯性的变化规律。此外,还提出了使用高导热防磨材料和金属格栅来替代循环流化床锅炉中传统耐磨耐火材料的优化方案,并对耐磨耐火材料替换后的锅炉热力性能、热惯性及动态特性进行了分析。研究结果表明,炉膛水冷壁和分离回料系统是循环流化床锅炉内热惯性最大的部件,它们的热惯性约占锅炉总热惯性的80%;在不同负荷区间,耐磨耐火材料占总热惯性的比例均超过50%,工质热惯性占比约为25%;循环流化床锅炉在低负荷区间具有更大的热惯性,30%-50%负荷区间的热惯性是75%-100%负荷区间热惯性的约1.6倍。使用金属格栅和高导热材料替代耐磨耐火材料可以有效降低锅炉的热惯性,提高锅炉的变负荷速率和运行稳定性。不同负荷区间负荷变化时,锅炉整体热惯性降幅均约为30%-35%。这种热惯性的减小有助于提高锅炉的变负荷响应速率,满足消纳新能源对火电机组提出的灵活运行需求。

本文引用格式

SUN Guorui, WU Haowen, LIU Shangzhong, LIU Tonghua, LIU Jixiang, YANG Hairui, ZHANG Man . Thermal Inertia of 330 MW Circulating Fluidized Bed Boiler during Load Change[J]. 热科学学报, 2023 , 32(5) : 1771 -1783 . DOI: 10.1007/s11630-023-1888-6

Abstract

The operating principles of Circulating Fluidized Bed (CFB) boilers involve a significant amount of heat accumulation, which forms the thermal inertia of the boiler and hinders the improvement of its variable load response rate. This study aims to characterize the thermal inertia of CFB boilers by evaluating the change in the boiler’s heat accumulation corresponding to the change in unit power generation. The thermal inertia of a 330 MW CFB boiler was determined through the collection of operating data under four different operating conditions of 30%, 50%, 75%, and 100% load. The study proposes to substitute the existing refractory material with a metal grille to reduce the thermal inertia of the boiler. The effect of the metal grille on heat transfer was confirmed through verification on a 440 t/h CFB boiler, and its performance change and thermal inertia reduction were further predicted. The results indicate that over 50% of the total thermal inertia of CFB boilers originates from the refractory material. The use of metal grille in place of refractory material improved heat transfer in the furnace, resulting in a decrease of the furnace chamber temperature by 13°C in the 330 MW CFB boiler. This reduction of thermal inertia by 30%–35% will facilitate faster load lifting and lowering of the boiler, fulfilling the requirement for flexible peaking.

参考文献

[1] Bing Z., Jiang M., Chen D., et al., Exploring the key role of chemical engineering in low carbon development transition from the perspective of material resource utilization and carbon emission linkage. Journal of Chemical Engineering, 2021, 72(12): 5893–5903.
[2] Ceylan I., Ali I.H.G., Ergün A., et al., A new hybrid system design for thermal energy storage. Journal of Thermal Science, 2020, 29(5): 1300–1308.
[3] Shuai Y., Zhao B., Jiang D., et al., Current status and outlook of efficient and clean coal-fired power generation technology in China. Thermal Power Generation, 2022, 51(1): 1–10.
[4] Chang H., Zhang P., Wang W., et al., Coal-fired power generation industry upgrading to support China’s energy conservation and carbon neutral national strategy. Thermal Power Generation, 2021, 50(04): 1–6.
[5] Sho W., Lv X., Shao Y., et al., Past search and future insight of fluidization. Journal of Chemical Engineering, 2021, 72(12): 5904–5927.
[6] Yue G., Lv J., Xu P., et al., Analysis of the development status and prospect of circulating fluidized bed combustion. China Electric Power, 2016, 49(01): 1–13.
[7] Lv J., Waterwall heat load and hydrodynamics of supercritical circulating fluidized bed boiler. Tsinghua University, Beijing, China, 2004.
[8] Liu Z.Y., Ma S.X., Liu J.H., et al., Experimental study on dynamic characteristics of 350 MW supercritical circulating fluidized bed boiler. Thermal Power Engineering, 2017, 32(12): 54–60, 138–139.
[9] Yao Y.G., Jiang L., Xiao H.R., et al., Restart-up performance of a CFB boiler after a sudden power failure accident. Journal of Thermal Science, 2022, 31(3): 830–839.
[10] Aste N., Leonforte F., Manfren M., et al., Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study. Applied Energy, 2015, 145: 111–123.
[11] Li J.J., Li Y., Lv J.F., et al., Thermal inertia analysis of circulating fluidized bed boiler. Thermal Power Engineering, 2009, 24(5): 609–613, 681.
[12] Gao M., Hong F., Liu J., Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units. Applied Energy, 2017, 185: 463–471.
[13] Qin Z., Liu J., Zhang L., Gu J., Analysis and calculation of supercritical DC boiler heat storage. Journal of Power Engineering, 2013, 33(4): 250–255.
[14] Wu H., Mao Y., Liu Z., Zhang Y., Liao H., Numerical simulation on 600 MW tangentially fired pulverized-coal boiler with oxygen-enriched combustion. Greenhouse Gases: Science and Technology, 2019, 9(2): 276–286.
[15] Nie X., Xie H., Yang D., et al., Safety analysis of water circulation in circulating fluidized bed unit boiler with deep peaking load. Journal of Central South University (Natural Science Edition), 2022, 53(7): 2766–2776.
[16] Liu J., Zhang J., Circulating fluidized bed boiler circulation multiplier calculation model. Journal of Power Engineering, 2017, 37(8): 597–602.
[17] Huang Y.C., Study on hydrodynamic characteristics of circulating fluidized bed boiler. Shanghai Jiaotong University, Shanghai, China, 2016.
[18] Li S., Study of separator afterburning phenomenon in circulating fluidized bed boilers. Tsinghua University, Beijing, China, 2009.
[19] Kang S.K., Kwon T.W., Kim S.D., Hydrodynamic characteristics of cyclone reactors. Powder Technology, 1989, 58(3): 211–220.
[20] Ke X., Engblom M., Zhang M., et al., Modeling of the axial distributions of volatile species in a CFB boiler. Chemical Engineering Science, 2021, 233: 116436.
[21] Ke X., Li D., Li Y., et al., 1-dimensional modelling of in-situ desulphurization performance of a 550 MWe ultra-supercritical CFB boiler. Fuel, 2021, 290: 120088.
[22] Yang H., Yue G., Xiao X., et al., 1D modeling on the material balance in CFB boiler. Chemical Engineering Science, 2005, 60(20): 5603–5611.
[23] Lu S., Zhang M., Zhang Y., Lv J., Chen Z., Yang H., Dynamic modeling and analysis of gas-solid flow in a full-loop circulating fluidized bed. Chinese Journal of Electrical Engineering, 2017, 37(S1): 98–104. DOI: 10.13334/j.0258-8013.pcsee.171345.
文章导航

/