Numerical Simulation of the Flow Induced by a Pair of Plasma Actuators on a Circular Cylinder in Quiescent Air

  • ZHU Zihao
展开
  • College of Mechanical Engineering, City University of Hongkong, Hongkong 999077, China

网络出版日期: 2025-10-29

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

Numerical Simulation of the Flow Induced by a Pair of Plasma Actuators on a Circular Cylinder in Quiescent Air

  • ZHU Zihao
Expand
  • College of Mechanical Engineering, City University of Hongkong, Hongkong 999077, China

Online published: 2025-10-29

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

摘要

介质阻挡放电(DBD)等离子体激励器作为一种高效主动流动控制装置,因其在边界层分离控制领域的应用潜力而广受关注。尽管已有大量研究探讨了DBD激励器在不同气动场景中的实际应用与性能表现,但关于等离子体诱导流动控制的基本物理机制仍待深入探索。本研究采用数值模拟方法,对圆柱绕流中的等离子体诱导流动动力学进行探究。圆柱体结构因其几何结构简单,且高曲率表面易引发显著边界层分离现象,因此很适合作为本次研究的对象。通过求解非定常雷诺平均Navier-Stokes(URANS)方程模拟流场,并采用经典数学模型引入等离子体激励效应。本研究将两个DBD等离子体激励器对称安装于圆柱左右两侧,环境空气初始设置为静止状态,最终流场完全由等离子体驱动产生。本研究主要取得两方面突破:首先,对占空比激励信号作用下产生的流场进行仿真模拟,并基于现有实验数据完成验证,重点分析了不同激励模式下涡结构的产生、演化与传播特性;其次,详细研究了时变等离子体体积力对压力分布、表面摩擦阻力和动量传递的影响机制。

本文引用格式

ZHU Zihao . Numerical Simulation of the Flow Induced by a Pair of Plasma Actuators on a Circular Cylinder in Quiescent Air[J]. 热科学学报, 2025 , 34(6) : 2274 -2286 . DOI: 10.1007/s11630-025-2206-2

Abstract

The Dielectric-Barrier-Discharge (DBD) plasma actuator is a highly efficient active flow control device, being widely recognized for its potential applications in boundary layer separation control. While many researchers have explored the practical implementation and performance of DBD plasma actuators in various aerodynamic contexts, the fundamental physical mechanisms governing plasma-induced flow control remain relatively under-explored. The present study utilizes numerical simulation to investigate the plasma-induced flow dynamics around a circular cylinder, whose configuration is selected due to its geometric simplicity and the prominent boundary layer separation that occurs due to its highly curved surface. The flow field is simulated by solving the Unsteady Reynolds Averaged Navier Stokes (URANS) equations while the plasma actuation effect is incorporated through a well-known mathematical model. In this study, two DBD plasma actuators are symmetrically installed on the left and right sides of the cylinder. The ambient air is set to be initially quiescent and the resulting flow field is driven entirely by the plasma. This research makes two primary contributions. First, the flow fields generated under duty-cycle actuation signals are simulated and validated against existing experimental data. Particular attention is given to the generation, evolution and propagation of vortex structures arising from different actuation modes. Second, a detailed analysis is conducted on how a time-varying plasma body force affects the distribution of pressure force, skin friction and momentum transfer.

参考文献

[1] Cai J., Tian Y., Meng X., et al., An experimental study of icing control using DBD plasma actuator. Experimental Fluids, 2017, 58: 102.
[2] Meng X., Hu H., Li C., et al., Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing. Physics of Fluids, 2019, 31(3): 037103.
[3] Wei B., Wu Y., Liang H., et al., Performance and mechanism analysis of nanosecond pulsed surface dielectric barrier discharge based plasma deicer. Physics of Fluids, 2019, 31(9): 091701.
[4] Zhu Y., Wu Y., Wei B., et al., Nanosecond-pulsed dielectric barrier discharge-based plasma-assisted anti-icing: modeling and mechanism analysis. Journal of Physics D: Applied Physics, 2020, 53(14): 145205.
[5] Liu Y., Kolbakir C., Hu H., et al., An experimental study on the thermal effects of duty-cycled plasma actuation pertinent to aircraft icing mitigation. International Journal of Heat and Mass Transfer, 2019, 136: 864–876.
[6] Zhou W., Liu Y., Hu H., et al., Utilization of thermal effect induced by plasma generation for aircraft icing mitigation. AIAA Journal, 2018, 56(3): 1–8.
[7] Tian Y., Zhang Z., Cai J., et al., Experimental study of an anti-icing method over an airfoil based on pulsed dielectric barrier discharge plasma. Chinese Journal of Aeronautics, 2018, 31(7): 1449–1460.
[8] Yu J., Wang Z., Chen F., et al., Large eddy simulation of the elliptic jets in film cooling controlled by dielectric barrier discharge plasma actuators with an improved model. Journal of Heat and Mass Transfer, 2018, 140(12): 122001.
[9] Li G., Chen F. Li L., et al., Large eddy simulation of the effects of plasma actuation strength on film cooling efficiency. Plasma Science and Technology, 2016, 18(11): 1101.
[10] Zong H., Pelt T., Kotsonis M., Airfoil flow separation control with plasma synthetic jets at moderate Reynolds number. Experiments in Fluids, 2018, 59: 169.
[11] Li Y., Wu Y., Zhou M., et al., Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation. Experiments in Fluids, 2010, 48: 1015–1023.
[12] Feng L., Jukes T., Choi K., et al., Flow control over a naca0012 airfoil using dielectric barrier discharge plasma actuator with a gurney flap. Experiments in Fluids, 2012, 52: 1533–1546.
[13] Gang L., Xu Y., Bin L., et al., Control of end wall secondary flow in a compressor cascade with dielectric barrier discharge plasma actuation. Science in China Series E: Technological Sciences, 2009, 52(12): 3715–3721.
[14] Zhang X., Li H., Huang Y., et al., Leading-edge flow separation control over an airfoil using a symmetrical dielectric barrier discharge plasma actuator, Chinese Journal of Aeronautics, 2019, 32(5): 1190–1203.
[15] Han M., Li J., Niu Z., et al., Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator, Chinese Journal of Aeronautics, 2015, 28(2): 377–384.
[16] Phan M., Shin J., Numerical investigation of aerodynamic flow actuation produced by surface plasma actuator on 2D oscillating airfoil. Chinese Journal of Aeronautics, 2016, 29(4): 882–892.
[17] Zhao X., Li Y., Wu Y., et al., Numerical investigation of flow separation control on a highly loaded compressor cascade by plasma aerodynamic actuation. Chinese Journal of Aeronautics 2012, 25(3): 349–360.
[18] Zhao G., Li Y., Hua L., et al., Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators. Chinese Journal of Aeronautics, 2015, 28(2): 368–376.
[19] Sheng J., Wu Y., Zhang H., et al., Flow control effect of spanwise distributed pulsed arc discharge plasma actuation on supersonic compressor cascade flow. Journal of Thermal Science, 2022, 31(5): 1723–1733.
[20] Hu X., Gao C., Hao J., et al., Experimental study of rotor flow separation control using a new type of dielectric barrier discharge plasma actuator, Journal of Thermal Science, 2019, 28(2): 354–359.
[21] Shahriari N., Kollert M., Hanifi A., Control of a swept wing boundary layer using ring-type plasma actuators. Journal of Fluid Mechanics, 2018, 884: 36–60
[22] Dorr P., Kloker M., Crossflow transition control by upstream flow deformation using plasma actuators, Journal of Applied Physics, 2017, 121(6): 063303.
[23] Abe T., Takizawa Y., Sato S., et al., Experimental study of controlling flow transition using surface dielectric barrier discharge actuator. AIAA Journal, 2008, 46(9): 30985.
[24] Li Y., Zhang X., Huang X., The use of plasma actuators for bluff body broadband noise control. Experiments in Fluids, 2010, 49: 367–377.
[25] Huang X., Zhang X., Streamwise and spanwise plasma actuators for flow-induced cavity noise control. Physics of Fluids, 2008, 20(3): 037101.
[26] Thomas F., Kozlov A., Corke T., Plasma actuators for cylinder flow control and noise reduction. AIAA Journal, 2008, 46(8): 1206554.
[27] Li Y., Wang X., Zhang D., Control strategies for aircraft airframe noise reduction. Chinese Journal of Aeronautics, 2013, 26(2): 249–260.
[28] Lou H., Alvi F., Shih C., Active and adaptive control of supersonic impinging jets. AIAA Journal, 2006, 44(1): 2001–3027.
[29] Qi L., Feng H., Zhang R., et al., Control of the noise production in a supersonic jet impinging an inclined plate using grooved surface. Applied Acoustics, 2022, 199(7): 108992.
[30] Xue M., Gao C., Xi H., at al., Vortices induced by a dielectric barrier discharge plasma actuator under burst-mode actuation. AIAA Journal, 2020, 58(6): 57764.
[31] Zhu Z., Fradera-Soler P., Jo W., et al., Numerical simulation of flow field around a square cylinder under plasma actuator control. Physics of Fluids, 2021, 33(12): 123611.
[32] Hui W., Meng X., Li H., at al., Flow induced by a pair of plasma actuators on a circular cylinder in still air under duty-cycle actuation. Physics of Fluids, 2022, 34(12): 123613.
[33] Suzen Y., Huang P., Simulations of flow separation control using plasma actuators. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006, https://doi.org/10.2514/6.2006-877.
[34] Halal Y., Marques C., Rocha L., et al., Numerical study of turbulent air and water flows in a nozzle based on the Coanda effect. Journal of Marine Science and Engineering, 2019, 7(2): 7020021.
文章导航

/