Performance Prediction and Parameter Optimization for Asymmetric Proton Exchange Membrane Fuel Cells

  • ZHANG Lei ,
  • DING Rui ,
  • CHENG Youliang ,
  • FAN Xiaochao ,
  • WANG Naixiao
展开
  • 1. Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071000, China
    2. School of Energy Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China

网络出版日期: 2025-10-29

基金资助

This work were supported by the National Natural Science Foundation of China (No. 52266018), and Xinjiang Tianshan Elite Program—Young Scientific and Technological Talents Project (Project No. 2022TSYCCX0051).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

Performance Prediction and Parameter Optimization for Asymmetric Proton Exchange Membrane Fuel Cells

  • ZHANG Lei ,
  • DING Rui ,
  • CHENG Youliang ,
  • FAN Xiaochao ,
  • WANG Naixiao
Expand
  • 1. Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071000, China
    2. School of Energy Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China

Online published: 2025-10-29

Supported by

This work were supported by the National Natural Science Foundation of China (No. 52266018), and Xinjiang Tianshan Elite Program—Young Scientific and Technological Talents Project (Project No. 2022TSYCCX0051).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

摘要

质子交换膜燃料电池的全局优化是提高性能和延长寿命的关键步骤。响应面优化方法能够在有限的数据条件下得到较高精度的预测结果。本研究建立了二维结块模型并结合响应面方法,针对非对称质子交换膜燃料电池开展结构参数与操作参数的数值模拟研究,深入解析参数间的交互作用机制,探索以功率密度最大化为目标的最优解。最终构建了平均相对误差低于3%的结构参数和操作参数优化模型。优化后功率密度提升57.4%,其中入口压力被确定为最关键的影响因素。非对称设计能有效强化多孔介质区域的气体传输特性。在结构参数中,阴极厚度具有更显著的影响权重;在操作参数中,压力对电池性能的影响最为突出。最佳温度区间为333 K-343 K,其表现出明显的边际效应。提升相对湿度可提升功率密度,其中阴极湿度的敏感性更高。合理设计非对称参数能够提升燃料电池的水热管理,进而提升能效。

本文引用格式

ZHANG Lei , DING Rui , CHENG Youliang , FAN Xiaochao , WANG Naixiao . Performance Prediction and Parameter Optimization for Asymmetric Proton Exchange Membrane Fuel Cells[J]. 热科学学报, 2025 , 34(6) : 2123 -2139 . DOI: 10.1007/s11630-025-2141-2

Abstract

Global optimization of fuel cells is a key approach to enhance performance and extend lifespan. Furthermore, the response surface method can provide accurate predictive results with minimal data. This study utilizes the response surface method alongside a two-dimensional agglomerate model to perform numerical simulations of asymmetric proton exchange membrane fuel cells, focusing on thickness and operating parameters. The study analyzes the interactions among parameters and aims to identify optimal values for maximum power density. The structural and operational parameter optimization models have been developed, with average errors of 2.28% and 0.29%, respectively, leading to produce a predictive model with an average error of less than 3% ultimately. The optimized power density increased by 57.4%, with inlet pressure identified as the most influential factor. The asymmetric design enhances gas transport in the porous media region. Among the structural parameters, cathode thickness has a greater impact; while among the operating parameters, pressure exerts the greatest impact on cell performance. The optimal temperature ranges from 333 K to 343 K, with a noticeable marginal effect. Higher relative humidity can enhance power density, and it’s worth noting that cathode humidity is more sensitive to power density than anode humidity. A well-designed asymmetric configuration can enhance the water and thermal management of the fuel cell, leading to improved energy efficiency.

参考文献

[1] Hu Z.Y., Xu L.F., Li J.Q., et al., A novel diagnostic methodology for fuel cell stack health: Performance, consistency and uniformity. Energy Conversion and Management, 2019, 185: 611–621.
[2] Wang Y.L., Xu H.K., Wang X.D., et al., Multi-sub-inlets at cathode flow-field plate for current density homogenization and enhancement of PEM fuel cells in low relative humidity. Energy Conversion and Management, 2022, 252: 115069.
[3] Sim J.B., Kang M.S., Oh H.Y., et al., The effect of gas diffusion layer on electrochemical effective reaction area of catalyst layer and water discharge capability. Renewable Energy, 2022, 197: 932–942.
[4] Wang M.L., Hou M., Gao Y.Y., et al., Study of substrate-free microporous layer of proton exchange membrane fuel cells. International Journal of Energy Research, 2022, 46(7): 9782–9793.
[5] Okonkwo P.C., Otor C., A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system. International Journal of Energy Research, 2021, 45(3): 3780–3800.
[6] Xia L.C., Ni M., He Q.J., et al., Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity. Applied Energy, 2021, 300: 117357.
[7] Zhu K.Q., Ding Q., Xu J.H., et al., Optimization of gas diffusion layer thickness for proton exchange membrane fuel cells under steady-state and load-varying conditions. Energy Conversion and Management, 2022, 267: 115915.
[8] Huang T.M., Yi D.X., Ren X., et al., Optimization of gas diffusion layer thickness for high-temperature proton exchange membrane fuel cells. Ionics, 2024, 30(3): 1511–1522.
[9] Zhang Z.Y., Mao J., Wei H.Y., et al., Effect of microporous layer structural parameters on heat and mass transfer in proton exchange membrane fuel cells. Applied Thermal Engineering, 2024, 239: 122083.
[10] Nishimura A., Yamamoto K., Okado T., et al., Impact analysis of MPL and PEM thickness on temperature distribution within PEFC operating at relatively higher temperature. Energy, 2020, 205: 117875.
[11] Xia L.C., Zhang C.Z., Hu M.H., et al., Investigation of parameter effects on the performance of high-temperature PEM fuel cell. International Journal of Hydrogen Energy, 2018, 43(52): 23441–23449.
[12] Xia L.C., Ni M., Xu Q.D., et al., Optimization of catalyst layer thickness for achieving high performance and low cost of high temperature proton exchange membrane fuel cell. Applied Energy, 2021, 294: 117012.
[13] Huang T.M., Huang J., Feng M.C., et al., Optimization of the thickness of catalytic layer for HT-PEMFCs based on genetic algorithm. Energy Reports, 2022, 8: 12905–12915.
[14] Li C.T., Wu S.J., Yu W.L., Parameter design on the multi-objectives of PEM fuel cell stack using an adaptive neuro-fuzzy inference system and genetic algorithms. International Journal of Hydrogen Energy, 2014, 39(9): 4502–4515.
[15] Wang K., Chen H.X., Zhang X.F., et al., Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC. Applied Catalysis B: Environmental, 2020, 264: 118468.
[16] Kahveci E.E., Taymaz I., Effect of humidification of the reactant gases in the proton exchange membrane fuel cell. International Journal of Hydrogen Energy 2015, 3(5): 356–359.
[17] Kahveci E.E., Taymaz I., Hydrogen PEMFC stack performance analysis through experimental study of operating parameters by using response surface methodology (RSM). International Journal of Hydrogen Energy, 2022, 47(24): 12293–12303.
[18] Fahr S., Engel F.K., Rehfeldt S., et al., Overview and evaluation of crossover phenomena and mitigation measures in proton exchange membrane (PEM) electrolysis. International Journal of Hydrogen Energy, 2024, 68: 705–721.
[19] Deng Q.H., Meng K., Chen W.S., et al., Investigation and evaluation of heat transfer enhancement for PEMFC under high current density based on a multiphase and non-isothermal electrochemical model. International Journal of Heat and Mass Transfer, 2024, 229: 125738.
[20] Yang L.S., Cui Y., Wang Z., et al., Optimization of the structure and cathode operating parameters of a serpentine PEMFC with longitudinal vortex generators by response surface method. Renewable Energy, 2024, 220: 119692.
[21] Jia C.C., He H.W., Zhou J.M., et al., A performance degradation prediction model for PEMFC based on bi-directional long short-term memory and multi-head self-attention mechanism. International Journal of Hydrogen Energy, 2024, 60: 133–146.
[22] Haddad S., Benghanem M., Hassan B., et al., Parameters optimization of PEMFC model based on gazelle optimization algorithm. International Journal of Hydrogen Energy, 2024, 87: 214–226.
[23] Elfar M.H., Fawzi M., Serry A.S., et al., Optimal parameters identification for PEMFC using autonomous groups particle swarm optimization algorithm. International Journal of Hydrogen Energy, 2024, 69: 1113–1128.
[24] Zhang S.Y., Mao Y.J., Liu F., et al., Multi-objective optimization and evaluation of PEMFC performance based on orthogonal experiment and entropy weight method. Energy Conversion and Management, 2023, 291: 117310.
[25] Wang X.Y., Ni Z.J., Yang Z.Q., et al., Optimization of PEMFC operating parameters considering water management by an integrated method of sensitivity analysis, multi-objective optimization and evaluation. Energy Conversion and Management, 2024, 321: 119057.
[26] Ma X., Zhang X.Q., Yang J.P., et al., Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells. Energy Conversion and Management, 2021, 227: 113579.
[27] Xu Y.M., Fan R.J., Chang G.F., et al., Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model. Energy Conversion and Management, 2021, 248: 114791.
[28] Fan R.J., Chang G.F., Xu Y.M., et al., Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC. Energy, 2023, 262: 125580.
[29] Chen L., Zhang R.Y., He P., et al., Nanoscale simulation of local gas transport in catalyst layers of proton exchange membrane fuel cells. Journal of Power Sources 2018, 400: 114–125.
[30] Zhang G.B., Jiao K., Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model. Energy Convers Manage 2018, 176: 409–421.
[31] Xing L., Mamlouk M., Kumar R., et al., Numerical investigation of the optimal Nafion® ionomer content in cathode catalyst layer: An agglomerate two-phase flow modelling. International Journal of Hydrogen Energy, 2014, 39(17): 9087–9104.
[32] Xie B., Zhang G.B., Xuan J., et al., Three-dimensional multi-phase model of PEM fuel cell coupled with improved agglomerate sub-model of catalyst layer. Energy Conversion and Management, 2019, 199: 112051.
[33] Wang Y.L., Liu T., Sun H., et al., Investigation of dry ionomer volume fraction in cathode catalyst layer under different relative humilities and nonuniform ionomer-gradient distributions for PEM fuel cells. Electrochim Acta, 2020, 353: 136491.
[34] Yang Z.Q., Ni Z.J., Li X.L., et al., Optimization of cathode catalyst layer composition for PEMFC based on an integrated approach of numerical simulation, surrogate model, multi-objective genetic algorithm and evaluation strategy. International Journal of Hydrogen Energy, 2024, 96: 97–112.
[35] Xing L., Das P.K., Song X.G., et al., Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity. Applied Energy, 2015, 138: 242–257.
[36] Sakthivel M., Drillet J.F., An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 231: 62–72.
文章导航

/