Micropore Design and Topological Optimization for Efficient Evaporation in Cylindrical Evaporators

  • WEN Xiaoting ,
  • MENG Tingting ,
  • SU Jin ,
  • HU Guifu ,
  • PAN Qinghui ,
  • SHUAI Yong
展开
  • School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 15001, China

网络出版日期: 2025-10-29

基金资助

This work is supported by the National Natural Science Foundation of China (No. 52476064, No. 52106085), National Key Research and Development Program of China (No. 2022YFE0210200), China Postdoctoral Science Foundation (No. 2023T160164), Natural Science Foundation of Heilongjiang Province (No. LH2023E043), and Fundamental Research Funds for the Central Universities (No. 2022ZFJH04, No. HIT.OCEF. 2023021).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

Micropore Design and Topological Optimization for Efficient Evaporation in Cylindrical Evaporators

  • WEN Xiaoting ,
  • MENG Tingting ,
  • SU Jin ,
  • HU Guifu ,
  • PAN Qinghui ,
  • SHUAI Yong
Expand
  • School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 15001, China

Online published: 2025-10-29

Supported by

This work is supported by the National Natural Science Foundation of China (No. 52476064, No. 52106085), National Key Research and Development Program of China (No. 2022YFE0210200), China Postdoctoral Science Foundation (No. 2023T160164), Natural Science Foundation of Heilongjiang Province (No. LH2023E043), and Fundamental Research Funds for the Central Universities (No. 2022ZFJH04, No. HIT.OCEF. 2023021).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

摘要

太阳能界面水蒸发技术提供了一种零碳、可持续的解决方案,用于从海水和废水中提取清洁水,为应对全球水危机提供一项有效策略。本研究采用有限元模拟来研究太阳能界面蒸发过程,阐明蒸发过程中热、水和盐之间的相互作用,利用拓扑优化技术优化设计蒸发器内部水道。在本项工作中,基于碳基聚合物材料开发一种具有垂直微孔的圆柱形蒸发器模型,分析孔径和孔间距对蒸发速率影响,同时分析热导率、太阳辐射强度和环境风速对蒸发器性能影响。模拟结果显示,在孔径为20 µm、孔间距为0.55 mm时,蒸发器达到最高蒸发速率为0.91 kg/(m2·h)。研究结果表明,较小孔径显著提高蒸发速率,而较大孔间距则使蒸发速率先升高后降低。进一步优化包括使用直径为20 µm的圆形孔,根据拓扑构型调整孔的横截面形状,材料体积分数为0.5,优化后结构展现出2.91 kg/(m2·h)的蒸发速率,相比未优化设计提高了219.78%。这些优化结构和模拟结果为蒸发器设计提供参考。

本文引用格式

WEN Xiaoting , MENG Tingting , SU Jin , HU Guifu , PAN Qinghui , SHUAI Yong . Micropore Design and Topological Optimization for Efficient Evaporation in Cylindrical Evaporators[J]. 热科学学报, 2025 , 34(6) : 2046 -2058 . DOI: 10.1007/s11630-025-2194-2

Abstract

Solar-driven interfacial water evaporation technology offers a zero-carbon, sustainable solution for extracting clean water from seawater and wastewater, presenting an effective strategy to address the global water crisis. This study has employed finite element simulation to investigate the solar interfacial evaporation process, elucidating the interactions between heat, water, and salt during evaporation. Additionally, the internal water channels of the evaporator are optimized and designed using topology optimization techniques. In this project, a cylindrical evaporator model with vertical micropores is developed from carbon-based polymer materials. The impact of pore diameter and spacing on the evaporation rate is analyzed, alongside the effects of thermal conductivity, solar radiation intensity, and ambient wind speed on the evaporator’s performance. Simulations have revealed that with a pore diameter of 20 μm and a spacing of 0.55 mm, the evaporator achieves the highest evaporation rate of 0.91 kg·m–2·h–1. The findings indicate that smaller pore sizes substantially enhance the evaporation rate, while larger pore spacings initially increase, and then decrease the rate. Further optimization involves using 20 μm-diameter round pores and adjusting the cross-sectional shapes of the pores based on topological configurations with a material volume factor of 0.5. The optimized structure demonstrates an evaporation rate of 2.91 kg·m–2·h–1, representing a 219.78% increase over the unoptimized design. These optimized structures and simulation results provide valuable insights for future evaporator designs.

参考文献

[1] Mekonnen M.M., Hoekstra A.Y., Four billion people facing severe water scarcity. Science Advances, 2016, 2(2): e1500323.
[2] Yang G.M., Yang D.Z., Perez M.J., et al., Hydrogen production using curtailed electricity of firm photovoltaic plants: conception, modeling, and optimization. Energy Conversion and Management, 2024, 308: 118356.
[3] Wada Y., Floerke M., Hanasaki N., et al., Modeling global water use for the 21st century: the water futures and solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 2016, 9(1): 175–222.
[4] Musie W., Gonfa G., Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon, 2023, 9(8): e18685.
[5] Wang F., Wang C.B., Shi G.L., et al., Isolating solar harvesting and water evaporation of salt-free Janus steam generator for concentration-independent seawater desalination. Desalination, 2023, 545: 116157.
[6] Pan Y.M., Li E., Wang Y.J., et al., Simple design of a porous solar evaporator for salt-free desalination and rapid evaporation. Environmental Science & Technology, 2022, 56(16): 11818–11826.
[7] Sharshir S.W., Algazzar A.M., Elmaadawy K.A., et al., New hydrogel materials for improving solar water evaporation, desalination and wastewater treatment: A review. Desalination, 2020, 491: 114564.
[8] Xie W.C., Tang P., Wu Q.D., et al., Solar-driven desalination and resource recovery of shale gas wastewater by on-site interfacial evaporation. Chemical Engineering Journal, 2022, 428: 132624.
[9] Li Y., Liu X.Y., Hong W.P., et al., Formation, evolution, and enhancement mechanisms of mixed temperature gradient during interfacial solar vapor generation. International Journal of Heat and Mass Transfer, 2023, 208: 124082.
[10] Chang Z.H., Yang J., Chu Y.Q., et al., Energy, exergy and economic analysis of a novel immersion tapered solar still for combination with solar concentrator. Desalination, 2025, 601: 118560.
[11] Liu G.H., Chen T., Xu J.L., et al., Salt-rejecting solar interfacial evaporation. Cell Reports Physical Science, 2021, 2(1): 100310.
[12] Liu G.H., Xu J.L., Wang K.Y., Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41: 269–284.
[13] Arunkumar T., Lim H.W., Denkenberger D., et al., A review on carbonized natural green flora for solar desalination. Renewable & Sustainable Energy Reviews, 2022, 158: 112121.
[14] Hu X.Z., Xu W.C., Zhou L., et al., Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 2017, 29(5): 1604031.
[15] Seh Z.W., Liu S.H., Low M., et al., Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314.
[16] Ai S., Ma M., Chen Y.Z., et al., Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanoparticles for water evaporation and desalination. Chemical Engineering Journal, 2022, 429: 132014.
[17] Li X.J., Yao Z.P., Wang J.K., et al., A novel flake-like Cu7S4 solar absorber for high-performance large-scale water evaporation. ACS Applied Energy Materials, 2019, 2(7): 5154–5161.
[18] Zhang Y.X., Xiong T., Nandakumar D.K., et al., Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Advanced Science, 2020, 7(9): 1903478.
[19] Liu G.H., Xu J.L., Chen T., et al., Progress in thermoplasmonics for solar energy applications. Physics Reports-Review Section of Physics Letters, 2022, 981: 1–50.
[20] Zheng X.Z., Zhang L.W., Photonic nanostructures for solar energy conversion. Energy & Environmental Science, 2016, 9(8): 2511–2532.
[21] Wang F., Mu P., Zhang Z., et al., Reduced graphene oxide coated hollow polyester fibers for efficient solar steam generation. Energy Technology, 2019, 7(7): 1900265.
[22] Li Y.J., Gao T.T., Yang Z., et al., 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Advanced Materials, 2017, 29(26): 1700981.
[23] Zhao F., Zhou X.Y., Shi Y., et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018, 13(6): 489–495.
[24] Yang L., Chen G.L., Zhang N., et al., Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19311–19320.
[25] Yan W.T., Yang X., Liu T.Q., et al., Numerical simulation of heat transfer performance for ultra-thin flat heat pipe. Journal of Thermal Science, 2023, 32(2): 643–649.
[26] Lian X.X., Zhong D.W., Modeling and simulation of lithium vacuum evaporation process using COMSOL multiphysics. Journal of Thermal Science, 2024, 33(1): 86–100.
[27] Wu L., Dong Z.C., Cai Z.R., et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nature Communications, 2020, 11(1): 521.
[28] Shan H., Ye Z.Y., Yu J., et al., Improving solar water harvesting via airflow restructuring using 3D vapor generator. Device, 2023, 1(4): 100065.
[29] Li J.Y., Zhou X., Zhang J.Y., et al., Migration crystallization device based on biomass photothermal materials for efficient salt-rejection solar steam generation. ACS Applied Energy Materials, 2020, 3(3): 3024–3032.
[30] Chae H.G., Kumar S., Materials science-making strong fibers. Science, 2008, 319(5865): 908–909.
[31] Wang W., Tian Z.Y., He N.R., et al., Biomass derived evaporator with highly interconnected structure for eliminating salt accumulation in high-salinity brine. Desalination, 2024, 574: 117232.
[32] Hou Y.C., Qiu J., Wang W., et al., Development of topology-optimized structural cavities macro- encapsulating chloride salt by gel-casting for high-temperature thermal energy storage. Journal of Energy Storage, 2024, 78: 110056.
[33] Chao W.X., Sun X.H., Li Y.D., et al., Enhanced directional seawater desalination using a structure-guided wood aerogel. ACS Applied Materials & Interfaces, 2020, 12(19): 22387–22397.
[34] Kong Y., Gao Y., Gao B.Y., et al., Tubular polypyrrole enhanced elastomeric biomass foam as a portable interfacial evaporator for efficient self-desalination. Chemical Engineering Journal, 2022, 445: 136701.
[35] Jin L., Zhang L., Liang H., et al., Large-scale carbon fiber-based solar-driven evaporator with 1T MoS2-MXene heterostructure: towards reliable mechanical performance and efficient seawater desalination. Chemical Engineering Journal, 2024, 497: 154469.
[36] Choi J., Lee H., Sohn B., et al., Highly efficient evaporative cooling by all-day water evaporation using hierarchically porous biomass. Scientific Reports, 2021, 11(1): 16811.
[37] Jonhson W., Xu X., Zhang D.W., et al., Fabrication of 3D-printed ceramic structures for portable solar desalination devices. ACS Applied Materials & Interfaces, 2021, 13(19): 23220–23229.
[38] Liu C., Hong K.V., Sun X., et al., An ‘antifouling’ porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination. Journal of Materials Chemistry A, 2020, 8(25): 12323–12333.
文章导航

/