储能

Assessment on Thermal Storage Performance of Capsule-Type Composite Phase-Change Materials

  • MA Rui ,
  • GUO Jiamin ,
  • WANG Zilong ,
  • WANG Feng
展开
  • 1. College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
    2. Key Laboratory of Wind and Solar Energy Utilization Mechanism and Optimization in Inner Mongolia, Inner Mongolia University of Technology, Hohhot 010051, China

网络出版日期: 2025-03-04

基金资助

This work is supported by the Inner Mongolia Autonomous Region Science and Technology Plan Project (Grant No. 2021GG0253), Inner Mongolia Autonomous Region Natural Science Foundation (Grant No. 2024MS05044), Young Scientific and Technological Talent (Grant No. NJYT24012), Inner Mongolia Autonomous Region Scientific Research Projects of Universities (Grant No. JY20220110) and Autonomous Region Science and Technology Plan Project (Grant No. 2021ZD0036).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

Assessment on Thermal Storage Performance of Capsule-Type Composite Phase-Change Materials

  • MA Rui ,
  • GUO Jiamin ,
  • WANG Zilong ,
  • WANG Feng
Expand
  • 1. College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
    2. Key Laboratory of Wind and Solar Energy Utilization Mechanism and Optimization in Inner Mongolia, Inner Mongolia University of Technology, Hohhot 010051, China

Online published: 2025-03-04

Supported by

This work is supported by the Inner Mongolia Autonomous Region Science and Technology Plan Project (Grant No. 2021GG0253), Inner Mongolia Autonomous Region Natural Science Foundation (Grant No. 2024MS05044), Young Scientific and Technological Talent (Grant No. NJYT24012), Inner Mongolia Autonomous Region Scientific Research Projects of Universities (Grant No. JY20220110) and Autonomous Region Science and Technology Plan Project (Grant No. 2021ZD0036).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

摘要

为了应对新能源和余热回收的间歇性挑战,并解决相变材料的腐蚀和过冷问题,本研究通过实验和数值模拟,开发并研究了一种中温相变胶囊(PCC)。对所开发的 PCC 进行了 150 次热循环稳定性测试以评估其性能,结果表明胶囊表面保持完好,没有泄漏迹象。采用焓-孔隙度法结合流体体积法建立了一个数值模型,以模拟具有两种结构的胶囊中的相变过程:一种是具有中央空腔的胶囊,另一种是具有顶部空腔的胶囊。结果表明,当使用 304 不锈钢作为两种结构的壁材时,中心空腔的 PCC 熔化速度比顶部空腔的快 28.3%。当使用不同材料作为壁材时,聚四氟乙烯(PTFE)制成的 PCC 熔化速度比 304 不锈钢制成的胶囊慢 22.1%。相反,改性聚四氟乙烯 PCC 的熔化速度比不锈钢制成的 PCC 快 15.2%。此外,在使用不同直径的 PCC 时,直径为 24 毫米和 16 毫米的聚四氟乙烯和不锈钢基 PCC 完全熔化的时间差分别为 118 秒和 66 秒,这表明时间差随胶囊直径的减小而减小。

本文引用格式

MA Rui , GUO Jiamin , WANG Zilong , WANG Feng . Assessment on Thermal Storage Performance of Capsule-Type Composite Phase-Change Materials[J]. 热科学学报, 2025 , 34(2) : 448 -464 . DOI: 10.1007/s11630-025-2098-1

Abstract

To address the intermittent challenges of new energy and waste heat recovery as well as counteract the issues of corrosion and overcooling in phase-change materials, this study develops and investigates a medium-temperature phase-change capsule (PCC) through experiments and numerical simulations. The thermal cycle stability testing of the developed PCC, subjected to 150 cycles to evaluate its performance, demonstrated that the capsule’s surface remained intact with no signs of leakage. The enthalpy-porosity method combined with the volume-of-fluid method was used to establish a numerical model to simulate the phase-change process in capsules with two structures: one with a central cavity and the other with a top cavity. Results indicated that when using 304 stainless steel as the wall material for both structures, the PCC with the centrally located cavity melted 28.3% faster than that with the cavity at the top. When using different materials as wall coverings, the melting rate of the PCC made of polytetrafluoroethylene (PTFE) was 22.1% slower than that of the capsule made of 304 stainless steel. Conversely, the modified PTFE PCC melted 15.2% faster than the stainless steel-based PCC. Furthermore, when using PCCs having different diameters, the time differences for complete melting between the PTFE and stainless steel-based PCCs were 118 s and 66 s for the capsules having diameters of 24 mm and 16 mm, respectively, indicating that the time difference decreased with decreasing capsule diameter.

参考文献

[1] Vakilzadeh A.H., Sarvestani A.B., Javaherdeh K., et al., Heat transfer and fluid flow in a PCM-filled enclosure: Effect of heated wall configuration. Journal of Energy Storage, 2024, 87: 111448. 
https://doi.org/10.1016/j.est.2024.111448
[2] Tan F.L., Constrained and unconstrained melting inside a sphere. International Communications in Heat and Mass Transfer, 2008, 35(4): 466–475. 
https://doi.org/10.1016/j.icheatmasstransfer.2007.09.008
[3] Tan F.L., Hosseinizadeh S.F., Khodadadi J.M., et al., Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. International Journal of Heat and Mass Transfer, 2009, 52(15–16): 3464–3472. 
https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.043
[4] Liu Y., Numerical study on phase change heat storage capsule and its accumulation heat storage characteristics. Northeast Electric Power University, 2018.
[5] Zhang Z., Liu Y., Jiang T., et al., Analysis of heat storage process of phase change capsules with holes. Chemical Progress, 2017, 36(6): 2123–2130.
10.16085/j.issn.1000-6613.2017.06.022
[6] Chen Z., Analysis of heat transfer performance of high temperature phase change capsule heat storage. Zhengzhou University, 2020. 
10.27466/d.cnki.gzzdu.2020.000970
[7] Dukhan W.A., Dhaidan N.S., Al-Hattab T.A., et al., Phase-change of paraffin inside heat exchangers: an experimental study. International Journal of Environmental Science and Technology, 2022, 19(4): 3155–3164. https://doi.org/10.1007/s13762-021-03367-2
[8] Milyani A.H., Attar E.T., Abdulaal M.J., et al., Thermal analysis of battery cells placed in triangular enclosures filled with PCM in the presence of forced airflow in an air duct. Journal of Building Engineering, 2022, 57: 104887. https://doi.org/10.1016/j.jobe.2022.104887
[9] Sun Y.S., Xu J.Y., Wang H.J., et al., Effects of natural and Marangoni convections on melting of high-temperature encapsulated phase change material under the earth and the moon gravities. Applied Thermal Engineering, 2022, 201: 117760.
https://doi.org/10.1016/j.applthermaleng.2021.117760
[10] Elmozughi A.F., Solomon L., Oztekin A., et al., Encapsulated phase change material for high temperature thermal energy storage—Heat transfer analysis. International Journal of Heat and Mass Transfer, 2014, 78: 1135–1144. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.087
[11] Solomon L., Elmozughi A.F., Oztekin A., et al., Effect of internal void placement on the heat transfer performance—Encapsulated phase change material for energy storage. Renewable Energy, 2015, 78: 438–447. https://doi.org/10.1016/j.renene.2015.01.035
[12] Chan C.W., Tan F.L., Solidification inside a sphere—an experimental study. International Communications in Heat and Mass Transfer, 2006, 33(3): 335–341.
https://doi.org/10.1016/j.icheatmasstransfer.2005.10.010
[13] Ismail M., Alkhazaleh A.H., Masri J., et al., Experimental and numerical analysis of paraffin waxes during solidification inside spherical capsules. Thermal Science and Engineering Progress, 2021, 26: 101095. 
https://doi.org/10.1016/j.tsep.2021.101095
[14] Archibold A.R., Rahman M., Gonzalez-Aguilar J., et al., Phase change and heat transfer numerical analysis during solidification on an encapsulated phase change material. Energy Procedia, 2014, 57: 653–661. 
https://doi.org/10.1016/j.egypro.2014.10.220
[15] Dhaidan N., Hashim H., Abbas A., et al., Discharging of PCM in various shapes of thermal energy storage systems: A review. Journal of Thermal Science, 2023, 32(3): 1124–1154. https://doi.org/10.1007/s11630-023-1793-z
[16] Raul A., Jain M., Gaikwad S., et al., Modelling and experimental study of latent heat thermal energy storage with encapsulated PCMs for solar thermal applications. Applied Thermal Engineering, 2018, 143: 415–428. 
https://doi.org/10.1016/j.applthermaleng.2018.07.123
[17] Liu H., Numerical simulation and experimental study on phase change heat storage in packed bed. Shanghai Jiaotong University, 2020.
10.27307/d.cnki.gsjtu.2020.001328
[18] Sun Y., Xu J., Hong F., Numerical study on heat storage system of high temperature cascade phase change capsule packed bed. Refrigeration Technology, 2022, 42(6): 102258.
[19] Li M.J., Jin B., Ma Z., et al., Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material. Applied Energy, 2018, 221: 1–15.
https://doi.org/10.1016/j.apenergy.2018.03.156
[20] Zheng Y., Zhao W., Sabol J.C., et al., Encapsulated phase change materials for energy storage-characterization by calorimetry. Solar Energy, 2013, 87: 117–126. 
https://doi.org/10.1016/j.solener.2012.10.003
[21] Sun G., Liu Y., Dong S., et al., Study on novel molten salt-ceramics composite as energy storage material. Journal of Energy Storage, 2020, 28: 101237. 
https://doi.org/10.1016/j.est.2020.101237
[22] Sheng N., Guo H., Zhu C., et al., Fabrication and characterization of Sn@Viod@Ceramic phase change macrocapsules for medium-temperature thermal storage. Journal of Energy Storage, 2022, 56: 106069. 
https://doi.org/10.1016/j.est.2022.106069
[23] Wickramaratne C., Dhau J.S., Kamal R., et al., Macro-encapsulation and characterization of chloride based inorganic Phase change materials for high temperature thermal energy storage systems. Applied Energy, 2018, 221: 587–596.
https://doi.org/10.1016/j.apenergy.2018.03.146
[24] Zhou X., Bao F., Yamashita S., et al., Storage and heat dissipation behavior of a heat storage ball with an Al-xSi alloy core and alumina ceramic shell. Journal of Energy Storage, 2022, 52: 104955.
https://doi.org/10.1016/j.est.2022.104955
[25] Mathur A., Kasetty R., Oxley J., et al., Using encapsulated phase change salts for concentrated solar power plant. Energy Procedia, 2014, 49: 908–915. 
https://doi.org/10.1016/j.egypro.2014.03.098
[26] Li W., Li S.G., Guan S., et al., Numerical study on melt fraction during melting of phase change material inside a sphere. International Journal of Hydrogen Energy, 2017, 42(29): 18232–18239. 
https://doi.org/10.1016/j.ijhydene.2017.04.136
[27] Yu D.H., He Z., Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management. Applied Energy, 2019, 247: 503–516.
https://doi.org/10.1016/j.apenergy.2019.04.072
[28] Alam T.E., Dhau J.S., Goswami D.Y., et al., Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems. Applied Energy, 2015, 154: 92–101.
https://doi.org/10.1016/j.apenergy.2015.04.086
[29] Gupta R., Shinde S., Yella A., et al., Thermomechanical characterisations of PTFE, PEEK, PEKK as encapsulation materials for medium temperature solar applications. Energy, 2020, 194: 116921.
https://doi.org/10.1016/j.energy.2020.116921
[30] Li Z., Li B., Chen H., et al., Research progress of phase change heat storage technology. Chemical Progress, 2020, 39(12): 5066–5085. 
10.16085/j.issn.1000-6613.2020-0376
[31] Gu L., Polytetrafluoroethylene and its application research progress. Zhejiang Chemical Industry, 2020, 51(3): 1–5.
[32] Augspurger M., Becker J., Buchholz J., et al., Three-dimensional numerical and experimental investigation of the behavior of solar salts within thermal storage devices during phase change. Applied Thermal Engineering, 2018, 143: 791–811.
https://doi.org/10.1016/j.applthermaleng.2018.07.134
[33] Solomon L., Elmozughi A.F., Oztekin A., et al., Effect of internal void placement on the heat transfer performance—Encapsulated phase change material for energy storage. Renewable Energy, 2015, 78: 438–447. 
https://doi.org/10.1016/j.renene.2015.01.035
[34] Yu B., Experimental and simulation study of solar salt solid-liquid phase transition process under the influence of natural convection. North China Electric Power University (Beijing), 2022.
10.27140/d.cnki.ghbbu.2022.000413
[35] Assis E., Katsman L., Ziskind G., et al., Numerical and experimental study of melting in a spherical shell. International Journal of Heat and Mass Transfer, 2007, 50(9–10): 1790–1804.
https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.007
[36] Tao G., Research on design, preparation and application technology of advanced composite materials with high thermal conductivity. Nanjing University of Technology, 2006.
[37] Li M.J., Jin B., Ma Z., et al., Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material. Applied Energy, 2018, 221: 1–15.
https://doi.org/10.1016/j.apenergy.2018.03.156
[38] Sun Y., Study on heat transfer of high temperature phase change capsule and its packed bed heat storage system. Shanghai Jiaotong University, 2021.
10.27307/d.cnki.gsjtu.2021.000079
[39] Str A., Tc B., Visualization study of the shrinkage void distribution in thermal energy storage capsules of different geometry-ScienceDirect. Experimental Thermal and Fluid Science, 2007, 31(3): 181–189.
https://doi.org/10.1016/j.expthermflusci.2006.03.026.
文章导航

/