A New Approach to Suppress Tip Leakage Flow Utilizing Induced Shock Wave in Tip Region of a Transonic Compressor Rotor

CUI Weiwei, YAO Fei, LI Zongming, WANG Xiaonan, CHANG Guozhang, WANG Cuiping

热科学学报 ›› 2024, Vol. 33 ›› Issue (6) : 2059-2074.

PDF(21984 KB)
PDF(21984 KB)
热科学学报 ›› 2024, Vol. 33 ›› Issue (6) : 2059-2074. DOI: 10.1007/s11630-024-2052-7  CSTR: 32141.14.JTS-024-2052-7

A New Approach to Suppress Tip Leakage Flow Utilizing Induced Shock Wave in Tip Region of a Transonic Compressor Rotor

作者信息 +

A New Approach to Suppress Tip Leakage Flow Utilizing Induced Shock Wave in Tip Region of a Transonic Compressor Rotor

Author information +
文章历史 +

摘要

间隙泄漏流对高负荷压气机的流动稳定性具有显著影响。因此,本文提出了一种新方法,利用转子叶顶吸力面侧诱导激波来抑制跨音转子间隙泄漏流强度及其影响范围。通过设计三种具有不同周向扩张度的渐扩型间隙结构方案,以揭示该新方法的作用机理。在叶顶周向渐扩型间隙结构(由转子叶顶压力面侧指向吸力面侧)的作用下,新方案使得跨音转子的叶顶间隙区的超音速泄漏流射流形成明显加速现象。在加速膨胀后的超音速泄漏流与叶尖区域高压主流流体之间压差的作用下,新转子方案的叶尖间隙区域就会产生诱导激波。借助于该诱导激波,可以大幅减小泄漏流由转子叶顶吸力面侧流出时的速度和流量。此外,诱导激波对转子叶顶超音速泄漏流射流的抑制效果与其强度和周向位置密切相关。相比于具有均匀设计间隙的原型方案,当转子叶顶间隙的周向扩张角等于8°时,诱导激波对间隙泄漏流的抑制效果相对最优,能够实现跨音转子失速裕度增加5%以上,且引起的等熵效率下降不超过0.4%。

Abstract

Tip leakage flow affects the flow stability of high-loading compressors significantly. Therefore, a novel approach via induced shock wave near suction-side edge of blade tip was proposed to suppress the strength and influence range of leakage flow in a transonic rotor. Three new schemes with different circumferentially diverging degrees of clearance were designed to reveal the mechanism of the new approach. Through the action of the circumferentially diverging clearance (from the pressure side to the suction side over blade tip), a much more dramatic acceleration of the supersonic leakage jet flow appeared over blade tip of the new schemes. An induced shock wave was produced near the suction side edge of blade tip due to the pressure difference between the discharging leakage flow and the surrounding high-pressure mainflow in tip channel. As a result, both the mass flow rate and the outlet velocity of leakage flow were reduced significantly via the induced shock wave. Meanwhile, the suppressing effect of the new approach on the tip leakage jet flow was closely related to the strength and circumferential location of the induced shock wave. With the aids of the induced shock wave, the largest improvement of tip flow characteristics with an over 5% increase in stall margin was realized in new transonic rotor when the circumferential divergence angle equals 8°, accompanied with no more than a 0.4% decrease in isentropic efficiency.

关键词

circumferentially diverging clearance / induced shock wave / leakage flow / low-velocity region / stall margin enhancement

Key words

circumferentially diverging clearance / induced shock wave / leakage flow / low-velocity region / stall margin enhancement

引用本文

导出引用
CUI Weiwei , YAO Fei , LI Zongming , WANG Xiaonan , CHANG Guozhang , WANG Cuiping. A New Approach to Suppress Tip Leakage Flow Utilizing Induced Shock Wave in Tip Region of a Transonic Compressor Rotor[J]. 热科学学报, 2024, 33(6): 2059-2074 https://doi.org/10.1007/s11630-024-2052-7
CUI Weiwei , YAO Fei , LI Zongming , WANG Xiaonan , CHANG Guozhang , WANG Cuiping. A New Approach to Suppress Tip Leakage Flow Utilizing Induced Shock Wave in Tip Region of a Transonic Compressor Rotor[J]. Journal of Thermal Science, 2024, 33(6): 2059-2074 https://doi.org/10.1007/s11630-024-2052-7

参考文献

[1] Hah C.,Rabe D.C., Wadia A.R., Role of tip-leakage vortices and passage shock in stall inception in a swept transonic compressor rotor. Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, 2004, Parts A and B, GT2004-53863. 
https://doi.org/10.1115/GT2004-53867.
[2] Puterbaugh S.L., Copenhaver W.W., Flow field unsteadiness in the tip region of a transonic compressor rotor. Journal of Turbomachinery, 1997, 119(1): 122–128. https://doi.org/10.1115/1.2819097.
[3] Denton J.D., Loss mechanisms in turbomachines. Journal of Turbomachinery, 1993, 115(4): 621–656.  DOI:10.1115/1.2929299.
[4] Suder K.L., Blockage development in a transonic, axial compressor rotor. National Aeronautics and Space Administration of USA, Report No. NASA-TM-113115.
[5] Chima R.V., Calculation of tip leakage effects in a transonic compressor rotor. National Aeronautics and Space Administration of USA, Report No. NASA-TM-107216.
[6] Wisler D.C., Loss reduction in axial-flow compressors through low-speed model testing. Journal of Engineering for Gas Turbines and Power, 1985, 107(2): 354–363. https://doi.org/10.1115/1.3239730.
[7] Zhu W., Wang S.T., Zhang L.X., et al., Effect of tip clearance size on the performance of a low-reaction transonic axial compressor rotor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 234(2): 127–142. https://doi.org/10.1177/09576509198565.
[8] Adamczyk J.J., Celestina M.L., Greitzer E.M., The role of tip clearance in high-speed fan stall. Journal of Turbomachinery, 1993, 115(1): 28–38. https://doi.org/10.1115/1.2929212.
[9] Yamada K., Funazaki K., Furukawa M., The behavior of tip clearance flow at near-stall condition in a transonic axial compressor rotor. Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, 2007, Parts A and B, GT2007-27725. https://doi.org/10.1115/GT2007-27725.
[10] Yamada K., Furukawa M., Nakano T., et al., Unsteady three-dimensional flow phenomena due to breakdown of tip leakage vortex in a transonic axial compressor rotor. Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Volume 5: Turbo Expo 2004, Parts A and B, GT2004-53745. https://doi.org/10.1115/GT2004-53745.
[11] Chen H., Li Y.C., Tan D., Katz J., Visualizations of flow structures in the rotor passage of an axial compressor at the onset of stall. Journal of Turbomachinery, 2017, 139(4): 041008. https://doi.org/10.1115/1.4035076.
[12] Halbe C.V., Chati Y.S., George J.T., et al., Study of effects of rotor tip tailoring in axial flow compressors. Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015, 2A: V02AT37A018. https://doi.org/10.1115/GT2015-42520.
[13] Cui W.W., Xiang X.R., Zhao Q.J., et al., The effect of sweep on flowfields of a highly loaded transonic rotor. Aerospace Science and Technology, 2016, 58: 71–81. https://doi.org/10.1016/j.ast.2016.08.002.
[14] Day I.J., Stall, surge, and 75 years of research. Journal of Turbomachinery, 2016, 138(1): 011001. https://doi.org/10.1115/1.4031473.
[15] Hathaway M.D., Passive endwall treatments for enhancing stability. National Aeronautics and Space Administration of USA, 2007, Report No. NASA/TM-2007-214409.
[16] Yoon S., Cargill P., Casing treatment: its potential and limitations. Journal of Turbomachinery, 2003, 145(4): 041011. https://doi.org/10.1115/1.4055928.
[17] Li J.C., Liu Y., Du J., et al., Implementation of stability-enhancement with tip air injection in a multi-stage axial flow compressor. Aerospace Science and Technology, 2019, 113: 106646. https://doi.org/10.1016/j.ast.2021.106646.
[18] Zhang H.D., Wu Y., Li Y.H., et al., Control of compressor tip leakage flow using plasma actuation. Aerospace Science and Technology, 2019, 86: 244–255. https://doi.org/10.1016/j.ast.2019.01.009.
[19] Key N.L., Arts T., Comparison of turbine tip leakage flow for flat tip and squealer tip geometries at high-speed conditions. Journal of Turbomachinery, 2006, 128(2): 213–220. https://doi.org/10.1115/1.2162183.
[20] Schabowski Z., Hodson H., Giacche D., et al., Aeromechanical optimization of a winglet-squealer tip for an axial turbine. Journal of Turbomachinery, 2014, 136(7): 071004. https://doi.org/10.1115/1.4025687. 
[21] Tiralap A., Tan C.S., Donahoo E., et al., Effects of rotor tip blade loading variation on compressor stage performance. Journal of Turbomachinery, 2017, 139(5): 051006. https://doi.org/10.1115/1.4035252.
[22] Xu D.K., Xu D., Zhou C.H., et al., Effect of rotor axial blade loading distribution on compressor stability. Aerospace Science and Technology, 2021, 119: 107230. https://doi.org/10.1016/j.ast.2021.107230.
[23] Han S.B., Zhong J.J. Effect of blade tip winglet on the performance of a highly loaded transonic compressor rotor. Chinese Journal of Aeronautics, 2016, 29(3): 653–661. https://doi.org/10.1016/j.cja.2016.04.014.
[24] Zhong J.J., Han S., Sun P., The influence of suction-side winglet on tip leakage flow in compressor cascade. Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition, 2011, Volume 7: Turbomachinery, Parts A, B, and C. GT2011-46054. https://doi.org/10.1115/GT2011-46054.
[25] Li Z.H., Liu Y.M., Ji L.C., et al., Effect of nonuniform tip clearance on the performance of transonic axial compressors. Journal of Propulsion and Power, 2018, 34(3): 808–818. https://doi.org/10.2514/1.B36617.
[26] Ma H.W., Li B., Effects of axial non-uniform tip clearances on aerodynamic performance of a transonic axial compressor. Journal of Thermal Science, 2008, 17(4): 331–336. https://doi.org/10.1007/s11630-008-0331-3.
[27] Cui W.W., Liu F.S., Wang X.L., Yao F., Attenuation of leakage flow using axially nonuniform tip clearance in high loading transonic compressor rotor. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(4): 753–766. https://doi.org/10.1177/09544100211008093.
[28] Reid L., Moore R.D., Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor. National Aeronautics and Space Administration of USA, 1978, Report No. NASA-TP-1337.
[29] Suder K.L., Celestina M.L., Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor. Journal of Turbomachinery, 1996, 118(2): 218–229. https://doi.org/10.1115/1.2836629.
[30] Zhang S., Chu W., Yang J., Effect of axial short slot casing treatment, and its center deviation on stability of a transonic axial flow compressor. Proceedings of the ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, 2020, Volume 2A: Turbomachinery, GT2020-14588. https://doi.org/10.1115/GT2020-14588.

基金

This research work was sponsored by the General Program of National Natural Science Foundation of China (Grant No. 52076124) and the National Science and Technology Major Project (Grant No. J2019-II-0014-0035).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024
PDF(21984 KB)

56

Accesses

0

Citation

Detail

段落导航
相关文章

/