Effect of Preload Force on Heat Generation of Li(Ni0.8Co0.1Mn0.1)O2/SiOx-C System Batteries: The Discharge Process

LIN Chunjing, LAI Zhenxing, BAI Guangli, MA Biao, WEI Zhen, QI Chuang, LIU Shiqiang

热科学学报 ›› 2024, Vol. 33 ›› Issue (5) : 1809-1825.

PDF(8484 KB)
PDF(8484 KB)
热科学学报 ›› 2024, Vol. 33 ›› Issue (5) : 1809-1825. DOI: 10.1007/s11630-024-1999-8  CSTR: 32141.14.JTS-024-1999-8

Effect of Preload Force on Heat Generation of Li(Ni0.8Co0.1Mn0.1)O2/SiOx-C System Batteries: The Discharge Process

作者信息 +

Effect of Preload Force on Heat Generation of Li(Ni0.8Co0.1Mn0.1)O2/SiOx-C System Batteries: The Discharge Process

Author information +
文章历史 +

摘要

在长期充放电循环后,锂离子电池内部会发生各种材料的分解、结构变化和分布不均等劣化现象,进而影响锂离子电池的性能以及安全性。为了提高电池在生命周期内的性能,电池在进行成组时会预设一定的夹紧力来控制电池厚度的变化。不同的预紧力又会反过来影响电池的循环特性和产热特性。针对这一问题,本文以NCM811/硅碳体系软包锂离子电池为研究对象,对不同预紧力下的电池进行了充放电循环测试,进而采用等温量热仪测试了不同SOH和不同预紧力下电池的产热特性,并基于此建立了电池产热功率随SOH变化的经验预测模型。研究结果表明:当预紧力为5 N·m时,电池容量衰减最慢并且平均产热功率最低;IC曲线的特征峰值变化可以用来表征电极活性锂的损失,进而表征电池产热功率的变化;电池平均产热功率主要受SOH的影响,电池平均产热功率随SOH的降低会经历一段波谷,过了临界点以后平均产热功率会持续增大。这些发现共同强调了预紧力、SOH和产热特性之间错综复杂的关系,强调了调整最佳预紧力对提高锂离子电池效率的重要意义。

Abstract

Lithium-ion batteries (LIBs) undergo various degradation phenomena such as material decomposition, structural change and uneven lithium ion distribution during long-term cycles, which would affect their performance and safety. In order to improve the performance of the LIBs during their life cycle, preload force is preset when the batteries are assembled. Different preload forces will in turn affect the cycle life and heat generation of the battery. In order to address this issue, this work carries out charge/discharge cycle tests on a NCM811 battery under different preload forces. Isothermal calorimetry tests are performed to investigate the battery heat generation under different states of health (SOHs) and preload forces. Based on the test results, an empirical prediction model for heat generation power as a function of SOH is established. Results show that when the preload force is 5 N·m, the battery capacity decreases in the slowest rate and the average heat generation power is the lowest. Changes in peaks of the incremental capacity curve can be used to characterize the loss of lithium at the electrode, which in turn characterizes the change of heat generation power of the battery. The average heat generation power is mainly affected by the SOH, going through a period of trough with the decrease of the SOH and continuing to increase after crossing the critical point. In general, these findings emphasize the relationship between preload force, SOH and heat generation power, which is helpful for the judgment of optimal preload to improve the efficiency of LIBs.

关键词

lithium ion battery / cyclic aging / preload force / heat generation characteristic

Key words

lithium ion battery / cyclic aging / preload force / heat generation characteristic

引用本文

导出引用
LIN Chunjing , LAI Zhenxing , BAI Guangli , MA Biao , WEI Zhen , QI Chuang , LIU Shiqiang. Effect of Preload Force on Heat Generation of Li(Ni0.8Co0.1Mn0.1)O2/SiOx-C System Batteries: The Discharge Process[J]. 热科学学报, 2024, 33(5): 1809-1825 https://doi.org/10.1007/s11630-024-1999-8
LIN Chunjing , LAI Zhenxing , BAI Guangli , MA Biao , WEI Zhen , QI Chuang , LIU Shiqiang. Effect of Preload Force on Heat Generation of Li(Ni0.8Co0.1Mn0.1)O2/SiOx-C System Batteries: The Discharge Process[J]. Journal of Thermal Science, 2024, 33(5): 1809-1825 https://doi.org/10.1007/s11630-024-1999-8

参考文献

[1] Teixeira A.C.R., Sodré J.R., Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions. Transportation Research Part D: Transport and Environment, 2018, 59: 375–384. DOI: 10.1016/j.trd.2018.01.004.
[2] Duan J., Tang X., Dai H., et al., Building safe lithium-ion batteries for electric vehicles: A review. Electrochemical Energy Reviews, 2020, 3: 1–42. DOI: 10.1007/s41918-019-00060-4.
[3] Wang Z., Yuan J., Zhu X., et al., Overcharge-to- thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study. Journal of Energy Chemistry, 2021, 55: 484–498. DOI: 10.1016/j.jechem.2020.07.028.
[4] Spitthoff L., Shearing P.R., Burheim O.S., Temperature, ageing and thermal management of lithium-ion batteries. Energies, 2021, 14(5): 1248. DOI: 10.3390/en14051248.
[5] Appelman M., Venugopal P., Rietveld G., Impact of discharge current profiles on Li-ion battery pack degradation. 2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC). IEEE, 2022, pp: 474–480.  DOI: 10.1109/PEMC51159.2022.9962917.
[6] Ren H., Jia L., Dang C., et al., Experimental investigation on pouch lithium-ion battery thermal management with mini-channels cooling plate based on heat generation characteristic. Journal of Thermal Science, 2022, 31(3): 816–829. DOI: 10.1007/s11630-022-1586-9.
[7] Yang L., Xu H., Zhang H., et al., Numerical and experimental investigation on the performance of battery thermal management system based on micro heat pipe array. Journal of Thermal Science, 2022, 31(5): 1531–1541. DOI: 10.1007/s11630-022-1604-y.
[8] Wang Y., Li M., Chen Z., Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: Modeling, system identification, and validation. Applied Energy, 2020, 278: 115736. DOI: 10.1016/j.apenergy.2020.115736.
[9] Wang Y., Wang L., Li M., et al., A review of key issues for control and management in battery and ultra-capacitor hybrid energy storage systems. ETransportation, 2020, 4: 100064. DOI: 10.1016/j.etran.2020.100064.
[10] Pesaran A., Santhanagopalan S., Kim G.H., Addressing the impact of temperature extremes on large format Li-ion batteries for vehicle applications (presentation). National Renewable Energy Lab. (NREL), Golden, CO (United States), 2013.
[11] Wang H., Tao T., Xu J., et al., Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries. Journal of Energy Storage, 2022, 46: 103835. DOI: 10.1016/j.est.2021.103835.
[12] Al-Zareer M., Dincer I., Rosen M.A., A novel approach for performance improvement of liquid to vapor based battery cooling systems. Energy Conversion and Management, 2019, 187: 191–204. DOI: 10.1016/j.enconman.2019.02.063.
[13] Giel H., Henriques D., Bourne G., et al., Investigation of the heat generation of a commercial 2032 (LiCoO2) coin cell with a novel differential scanning battery calorimeter. Journal of Power Sources, 2018, 390: 116–126.  DOI: 10.1016/j.jpowsour.2018.04.017.
[14] Tang Y., Wu L., Wei W., et al., Study of the thermal properties during the cyclic process of lithium ion power batteries using the electrochemical-thermal coupling model. Applied Thermal Engineering, 2018, 137: 11–22. DOI: 10.1016/j.applthermaleng.2018.03.067.
[15] Liu S., Zhang H., Xu X., A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels. Journal of Energy Storage, 2021, 36: 102446.  DOI: 10.1016/j.est.2021.102446.
[16] Cao R., Zhang X., Yang H., et al., Experimental study on heat generation characteristics of lithium-ion batteries using a forced convection calorimetry method. Applied Thermal Engineering, 2023, 219: 119559. DOI: 10.1016/j.applthermaleng.2022.119559.
[17] Chang X.L., Li X.C., Jia L.Z., et al., Heat generation characteristic of overcharge cycle aging batteries. Energy Storage Science and Technology, 2023, 12(03): 685–697. DOI: 10.19799/j.cnki.2095-4239.2022.0692.
[18] Li L., Chen X., Hu R., et al., Aging mechanisms and thermal characteristics of commercial 18650 lithium-ion battery induced by minor mechanical deformation. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 021010. DOI: 10.1115/1.4048703.
[19] Liu G., Ouyang M., Lu L., et al., Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. Journal of Thermal Analysis and Calorimetry, 2014, 116: 1001–1010. DOI: 10.1007/s10973-013-3599-9.
[20] Anseán D., García V.M., González M., et al., Lithium-ion battery degradation indicators via incremental capacity analysis. IEEE Transactions on Industry Applications, 2019, 55(3): 2992–3002. DOI: 10.1109/TIA.2019.2891213.
[21] Birkl C.R., Roberts M.R., McTurk E., et al., Degradation diagnostics for lithium ion cells. Journal of Power Sources, 2017, 341: 373–386. DOI: 10.1016/j.jpowsour.2016.12.011.
[22] Kato H., Kobayashi Y., Miyashiro H., Differential voltage curve analysis of a lithium-ion battery during discharge. Journal of Power Sources, 2018, 398: 49–54.  DOI: 10.1016/j.jpowsour.2018.07.043.
[23] Eom K.S., Joshi T., Bordes A., et al., The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode. Journal of Power Sources, 2014, 249: 118–124.  DOI: 10.1016/j.jpowsour.2013.10.087.
[24] Liu J., Duan Q., Ma M., et al., Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling. Journal of Power Sources, 2020, 445: 227263.  DOI: 10.1016/j.jpowsour.2019.227263.
[25] Bauer M., Wachtler M., Stöwe H., et al., Understanding the dilation and dilation relaxation behavior of graphite-based lithium-ion cells. Journal of Power Sources, 2016, 317: 93–102. DOI: 10.1016/j.jpowsour.2016.03.078.
[26] Deich T., Hahn S.L., Both S., et al., Validation of an actively-controlled pneumatic press to simulate automotive module stiffness for mechanically representative lithium-ion cell aging. Journal of Energy Storage, 2020, 28: 101192. DOI: 10.1016/j.est.2020.101192.
[27] Aufschläger A., Kücher S., Kraft L., et al., High precision measurement of reversible swelling and electrochemical performance of flexibly compressed 5 Ah NMC622/graphite lithium-ion pouch cells. Journal of Energy Storage, 2023, 59: 106483. DOI: 10.1016/j.est.2022.106483.
[28] Deich T., Storch M., Steiner K., et al., Effects of module stiffness and initial compression on lithium-ion cell aging. Journal of Power Sources, 2021, 506: 230163. DOI: 10.1016/j.jpowsour.2021.230163.
[29] Ruihe L.I., Dongsheng R.E.N., Shan W., et al., Non-destructive local degradation detection in large format lithium-ion battery cells using reversible strain heterogeneity. Journal of Energy Storage, 2021, 40: 102788. DOI: 10.1016/j.est.2021.102788.
[30] Mussa A.S., Klett M., Lindbergh G., et al., Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells. Journal of Power Sources, 2018, 385: 18–26.  DOI: 10.1016/j.jpowsour.2018.03.020.
[31] Müller V., Scurtu R.G., Richter K., et al., Effects of mechanical compression on the aging and the expansion behavior of Si/C-composite NMC811 in different lithium-ion battery cell formats. Journal of the Electrochemical Society, 2019, 166(15): A3796–A3805. DOI: 10.1149/2.1121915jes.
[32] Michelini E., Höschele P., Heindl S.F., et al., Experimental investigation on reversible swelling mechanisms of lithium-ion batteries under a varying preload force. Batteries, 2023, 9(4): 218.  DOI: 10.3390/batteries9040218.
[33] Li R., Ren D., Guo D., et al., Volume deformation of large-format lithium ion batteries under different degradation paths. Journal of the Electrochemical Society, 2019, 166(16): A4106. DOI: 10.1149/2.0471916jes.
[34] Cannarella J., Arnold C.B., State of health and charge measurements in lithium-ion batteries using mechanical stress. Journal of Power Sources, 2014, 269: 7–14.  DOI: 10.1016/j.jpowsour.2014.07.003.
[35] Dahn H.M., Smith A.J., Burns J.C., et al., User-friendly differential voltage analysis freeware for the analysis of degradation mechanisms in Li-ion batteries. Journal of the Electrochemical Society, 2012, 159(9): A1405.  DOI: 10.1149/2.013209jes.
[36] Smith A.J., Dahn H.M., Burns J.C., et al., Long-term low-rate cycling of LiCoO2/graphite Li-ion cells at 55 C. Journal of The Electrochemical Society, 2012, 159(6): A705. DOI: 10.1149/2.056206jes.
[37] Medoš Ž., Čobanov I., Bešter-Rogač M., et al., Usually overlooked problems related with measurements of high-heat effects using power compensation isothermal titration calorimetry. Journal of Thermal Analysis and Calorimetry, 2021, 145: 87–96. DOI: 10.1007/s10973-020-09663-2.
[38] Xu J., Wu J., Ding J., et al., Research on heat generation measurement for lithium-ion battery using isothermal calorimeter. IEEE Transactions on Transportation Electrification, 2022. DOI: 10.1109/TTE.2022.3208749.
[39] Hu Y., Choe S.Y., Garrick T.R., Measurement of heat generation rate and heat sources of pouch type Li-ion cells. Applied Thermal Engineering, 2021, 189: 116709. DOI: 10.1016/j.applthermaleng.2021.116709.
[40] Assat G., Glazier S.L., Delacourt C., et al., Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry. Nature Energy, 2019, 4(8): 647–656. DOI: 10.1038/s41560-019-0410-6.
[41] Juarez-Robles D., Vyas A.A., Fear C., et al., Overdischarge and aging analytics of Li-ion cells. Journal of the Electrochemical Society, 2020, 167(9): 090558.  DOI: 10.1149/1945-7111/aba00a.
[42] Atalay S., Sheikh M., Mariani A., et al., Theory of battery ageing in a lithium-ion battery: Capacity fade, nonlinear ageing and lifetime prediction. Journal of Power Sources, 2020, 478: 229026.  DOI: 10.1016/j.jpowsour.2020.229026.
[43] Entwistle J., Ge R., Pardikar K., et al., Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review. Renewable and Sustainable Energy Reviews, 2022, 166: 112624. DOI: 10.1016/j.rser.2022.112624.
[44] Zhang H., Deng C., Zong Y., et al., Effect of sample interval on the parameter identification results of RC equivalent circuit models of Li-ion battery: An investigation based on HPPC test data. Batteries, 2022, 9(1): 1. DOI: 10.3390/batteries9010001.
[45] Ryu H.H., Park K.J., Yoon C.S., et al., Capacity fading of Ni-rich Li [NixCoyMn1–xy]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chemistry of Materials, 2018, 30(3): 1155–1163. DOI: 10.1021/acs.chemmater.7b05269.
[46] Yu B.C., Hwa Y., Park C.M., et al., Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1(15): 4820–4825.  DOI: 10.1039/C3TA00045A.
[47] Li H., Ji W., He Z., et al., Distinct capacity fade modes of Nickel-rich/Graphite-SiOx power lithium ion battery. Journal of Energy Storage, 2022, 47: 103830. DOI: 10.1016/j.est.2021.103830.
[48] Drüe M., Seyring M., Rettenmayr M., Phase formation and microstructure in lithium-carbon intercalation compounds during lithium uptake and release. Journal of Power Sources, 2017, 353: 58–66. DOI: 10.1016/j.jpowsour.2017.03.152.
[49] Yu B.C., Hwa Y., Kim J.H., et al., A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites. Electrochimica Acta, 2014, 117: 426–430. DOI: 10.1016/j.electacta.2013.11.158.
[50] Guo Y., Smith R.B., Yu Z., et al., Li intercalation into graphite: direct optical imaging and Cahn-Hilliard reaction dynamics. The Journal of Physical Chemistry Letters, 2016, 7(11): 2151–2156.  DOI: 10.1021/acs.jpclett.6b00625.
[51] Zhu J., Darma M.S.D., Knapp M., et al., Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance. Journal of Power Sources, 2020, 448: 227575. DOI: 10.1016/j.jpowsour.2019.227575.
[52] Zhang S.S., Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Materials, 2020, 24: 247–254. DOI: 10.1016/j.ensm.2019.08.013.
[53] Yao N., Zhang Y., Rao X., et al., A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 876–895. DOI: 10.1007/s12613-022-2422-7.

基金

The authors appreciate the financial supports from the National Key R&D Plan of China (No. 2021YFB2402001) and the Chongqing Municipal Innovation Project (No. CYS23657).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024
PDF(8484 KB)

81

Accesses

0

Citation

Detail

段落导航
相关文章

/