Near-Field Heat Transfer Enhancement of SiC-hBN-InSb Thermophotovoltaic System by Graphene Strong Coupling Effects

XU Zhiguo, HU Zhifang

热科学学报 ›› 2024, Vol. 33 ›› Issue (4) : 1409-1420.

PDF(2860 KB)
PDF(2860 KB)
热科学学报 ›› 2024, Vol. 33 ›› Issue (4) : 1409-1420. DOI: 10.1007/s11630-024-1967-3  CSTR: 32141.14.JTS-024-1967-3
传热传质

Near-Field Heat Transfer Enhancement of SiC-hBN-InSb Thermophotovoltaic System by Graphene Strong Coupling Effects

作者信息 +

Near-Field Heat Transfer Enhancement of SiC-hBN-InSb Thermophotovoltaic System by Graphene Strong Coupling Effects

Author information +
文章历史 +

摘要

本文设计了包括碳化硅-氮化硼石墨烯发射器和具有光栅的石墨烯锑化铟电池的近场热光伏器件,以增强近场热光伏系统的性能。采用波动电动力学和严格的耦合波分析方法计算辐射传热量。研究发现,具有两个石墨烯带的近场热光伏系统由于石墨烯的强耦合效应而表现更好。本文讨论了石墨烯化学势的影响。研究表明,石墨烯强耦合效应引起的表面等离子体激元、表面声子激元、双曲声子激元和磁激元的耦合增强了热光电器件的近场辐射传热。本文计算了不同极性子的拉比分裂频率,以量化石墨烯强耦合效应的相互作用。最后,研究了单元光栅填充率的影响,发现磁极性子的激发受石墨烯带和电池填充率的影响。这项研究为石墨烯辅助热光电系统的增强机制提供了新的解释,并为提高近场热光伏系统输出功率提供了一种新的方法。

Abstract

Near-field thermophotovoltaic (NTPV) devices comprising a SiC-hBN-graphene emitter and a graphene-InSb cell with gratings are designed to enhance the performance of the NTPV systems. Fluctuational electrodynamics and rigorous coupled-wave analysis are employed to calculate radiative heat transfer fluxes. It is found that the NTPV systems with two graphene ribbons perform better due to the graphene strong coupling effects. The effects of graphene chemical potential are discussed. It is demonstrated that near-field radiative heat transfer of thermophotovoltaic devices is enhanced by the coupling of surface plasmon polaritons, surface phonon polaritons, hyperbolic phonon polaritons, and magnetic polaritons caused by the graphene strong coupling effects. Rabi splitting frequency of different polaritons is calculated to quantify the mutual interaction of graphene strong coupling effects. Finally, the effects of cell grating filling ratio are investigated. The excitation of magnetic polaritons is affected by the graphene ribbon and the cell filling ratio. This investigation provides a new explanation of the enhancement mechanism of graphene-assisted thermophotovoltaic systems and a novel approach for improving the output power of the near-field thermophotovoltaic system.

关键词

near-field radiative heat transfer / thermophotovoltaics / strong coupling effect / multiple magnetic polaritons / graphene-hbn heterostructures

Key words

near-field radiative heat transfer / thermophotovoltaics / strong coupling effect / multiple magnetic polaritons / graphene-hbn heterostructures

引用本文

导出引用
XU Zhiguo , HU Zhifang. Near-Field Heat Transfer Enhancement of SiC-hBN-InSb Thermophotovoltaic System by Graphene Strong Coupling Effects[J]. 热科学学报, 2024, 33(4): 1409-1420 https://doi.org/10.1007/s11630-024-1967-3
XU Zhiguo , HU Zhifang. Near-Field Heat Transfer Enhancement of SiC-hBN-InSb Thermophotovoltaic System by Graphene Strong Coupling Effects[J]. Journal of Thermal Science, 2024, 33(4): 1409-1420 https://doi.org/10.1007/s11630-024-1967-3

参考文献

[1] Bau S., Chen Y.B., Zhang Z.M., Microscale radiation in thermophotovoltaic devices-A review. International Journal of Energy Research, 2007, 31: 689–716. 
[2] Wang J., Qin Y., Huo S., Xie K., Li Y., Numerical simulation of nanofluid-based parallel cooling photovoltaic thermal collectors. Journal of Thermal Science, 2023, 32(4): 1644–1656.
[3] Chen Y.Y., Wang D.J., Liu Y.F., Dong Y., Liu J.P., Research on photovoltaic performance reduction due to dust deposition: modelling and experimental approach. Journal of Thermal Science, 2019, 28: 1186–1194.
[4] Song J., Han J., Choi M., Lee B.J., Modeling and experiments of near-field thermophotovoltaic conversion: A review. Solar Energy Materials and Solar Cells, 2022, 238: 111556.
[5] Parka K., Zhang Z., Fundamentals and applications of near-field radiative energy transfer. Frontiers in Heat and Mass Transfer, 2013, 4: 013001. 
[6] Shchegrov A., Joulain K., Carminati R., Greffet J.J., Near-field spectral effects due to electromagnetic surface excitations. Physical Review Letters, 2000, 5: 1548–1551.
[7] Joulain K., Mulet J.P., Marquier F., Carminati R., Greffet J.J., Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surface Science Reports, 2005, 57: 59–112.
[8] Basu S., Zhang Z.M., Maximum energy transfer in near-field thermal radiation at nanometer distances. Journal of Applied Physics, 2009, 105: 3303. 
[9] Narayanaswamy A., Shen S., Chen G., Near-field radiative heat transfer between a sphere and a substrate. Physical Reviews B, 2008, 78: 115303. 
[10] Rousseau E., Siria A., Jourdan G., Volz S., Comin F., Chevrier J., Greffet J.J., Radiative heat transfer at the nanoscale. Nature Photonics, 2009, 3: 514–517. 
[11] Shen S., Narayanaswamy A., Chen G., Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Letters, 2009, 9: 2909–2913. 
[12] Ercąǧlar V., Hajian H., Rukhlenko I.D., Ozbay E., α-MoO3-SiC metasurface for mid-IR directional propagation of phonon polaritons and passive daytime radiative cooling. Applied Physics Letters, 2022, 121: 182201.
[13] Park K., Basu S., King W.P., Zhang Z.M., Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109: 305–316. 
[14] Bernardi M.P., Dupré O., Blandre E., Chapuis P.O., Vaillon R., Francoeur M., Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Scientific Reports, 2015, 5: 11626. 
[15] Narayanaswamy A., Chen G., Surface modes for near field thermophotovoltaics. Applied Physics Letters, 2003, 82: 3544–3546. 
[16] Kralik T., Hanzelka P., Zobac M., Musilova V., Fort T., Horak M., Strong near-field enhancement of radiative heat transfer between metallic surfaces. Physical Review Letters, 2012, 109: 3–7. 
[17] DeSutter J., Tang L., Francoeur M., A near-field radiative heat transfer device. Nature Nanotechnology, 2019, 14: 751–755. 
[18] Fiorino A., Zhu L., Thompson D., Mittapally R., Reddy P., Meyhofer E., Nanogap near-field thermophotovoltaics. Nature Nanotechnology, 2018, 13: 806–811. 
[19] Ottens R.S., Quetschke V., Wise S., Alemi A.A., Lundock R., Mueller G., Reitze D.H., Tanner D.B., Whiting B.F., Near-field radiative heat transfer between macroscopic planar surfaces. Physical Review Letters, 2011, 107: 1–4. 
[20] Inoue T., Koyama T., Kang D.D., Ikeda K., Asano T., Noda S., One-chip near-field thermophotovoltaic device integrating a thin-film thermal emitter and photovoltaic cell. Nano Letters, 2019, 19: 3948–3952. 
[21] Liu X., Zhang R.Z., Zhang Z., Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes. ACS Photonics, 2014, 1: 785–789. 
[22] Watjen J.I., Liu X.L., Zhao B., Zhang Z.M., A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices. ASME Journal of Heat Transfer, 2017, 139: 1–8.
[23] Yu H., Liu D., Duan Y., Yang Z., Four-layer metallodielectric emitter for spectrally selective near- field radiative transfer in nano-gap thermophotovoltaics. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 217: 235–242. 
[24] Chen F.R., Xu Z.G., Wang Y.T., Near-field radiative heat transfer enhancement in the thermophotovoltaic system using hyperbolic waveguides. International Journal of Thermal Sciences, 2021, 166: 106978. 
[25] Chen F.R., An G., Xu Z.G., Performance analysis of three-body near-field thermophotovoltaic systems with an intermediate modulator. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 258: 107395. 
[26] Zhang W.B., Wang B.X., Zhao C.Y., Active control and enhancement of near-field heat transfer between dissimilar materials by strong coupling effects. International Journal of Heat and Mass Transfer, 2022, 188: 122588. 
[27] Qing Y.M., Ren Y., Lei D., Ma H.F., Cui T.J., Strong coupling in two-dimensional materials-based nanostructures: A review. Journal of Optics, 2022, 24: 024009. 
[28] Brar V.W., Jang M.S., Sherrott M., Kim S., Lopez J.J., Kim L.B., Choi M., At water, hybrid surface-phonon- plasmon polariton modes in graphene/monolayer hBN heterostructures. Nano Letters, 2014, 14: 3876–3880. 
[29] Messina R., Hugonin J.P., Greffet J.J., Marquier F., deWilde Y., Belarouci A., Frechette L., Cordier Y., Ben-Abdallah P., Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons. Physical Review B, 2013, 87: 1–5. 
[30] Chen Z., Chen X., Tao L., Chen K., Long M., Liu X., Yan K., Stantchev R.I., Pickwell-MacPherson E., Xu J., Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nature Communication, 2018, 9: 1–7. 
[31] Zhang W.B., Zhao C.Y., Wang B.X., Enhancing near-field heat transfer between composite structures through strongly coupled surface modes. Physical Review B, 2019, 100: 1–11.
[32] Cai Y., Zhu J., Liu Q.H., Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Applied Physics Letters, 2015, 106: 043105. 
[33] Zhao B., Guizal B., Zhang Z.M., Fan S., Antezza M., Near-field heat transfer between graphene/hBN multilayers. Physical Review B, 2017, 95: 1–9. 
[34] Yang B., Pan D., Guo X., Hu H., Dai Q., Substrate effects on the near-field radiative heat transfer between bi-planar graphene/hBN heterostructures. International Journal of Thermal Sciences, 2022, 176: 107493. 
[35] Zheng Z., Wang A., Xuan Y., Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 208: 86–95. 
[36] Zhao B., Zhang Z.M., Strong plasmonic coupling between graphene ribbon array and metal gratings. ACS Photonics, 2015, 2: 1611–1618.
[37] Shi K.Z., Bao F.L., He N., He S.L., Near-field heat transfer between graphene-Si grating heterostructures with multiple magnetic-polaritons coupling. International Journal of Heat and Mass Transfer, 2019, 134: 1119–1126.
[38] Wang R., Lu J., Jiang J.H., Enhancing thermophotovoltaic performance using graphene-hBN- InSb near-field heterostructures. Physical Review Applied, 2019, 12(4): 044038. 
[39] Hajian H., Rukhlenko I.D., Erçaǧlar V., Hanson G., Ozbay E., Epsilon-near-zero enhancement of near-field radiative heat transfer in BP/hBN and BP/α-MoO3 parallel-plate structures. Applied Physics Letters, 2022, 120: 112204.
[40] Dai S., Ma Q., Liu M.K., Andersen T., Fei Z., Goldflam M.D., Wagner M., Watanabe K., Taniguchi T., Thiemens M., Keilmann F., Janssen G., Zhu S.E., Jarillo-Herrero P., Fogler M.M, Basov D.N., Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature Nanotechnology, 2015, 10: 682–686. 
[41] Francoeur M., Mengüç M.P., Vaillon R., Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared. Physical Review B, 2011, 84: 1–9. 
[42] Song J., Cheng Q., Near-field radiative heat transfer between graphene and anisotropic magneto-dielectric hyperbolic metamaterials. Physical Review B, 2016, 94: 1–8. 
[43] Messina R., Ben-Abdallah P., Graphene-based photovoltaic cells for near-field thermal energy conversion. Scientific Reports, 2013, 3: 1–5. 
[44] Liu X., Zhao B., Zhang Z.M., Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings. Physical Review A, 2015, 91: 062510. 
[45] Lussange J., Guérout R., Rosa F., Greffet J.J., Lambrecht A., Reynaud S., Radiative heat transfer between two dielectric nanogratings in the scattering approach. Physical Review B, 2012, 86: 1–5. 
[46] Guérout R., Lussange J., Chan H.B., Lambrecht A., Reynaud S., Thermal Casimir force between nanostructured surfaces. Physical Review A, 2013, 87: 1–6. 
[47] Desutter J., Vaillon R., Francoeur M., External luminescence and photon recycling in near-field thermophotovoltaics. Physical Review Applied, 2017, 8: 014030. 
[48] Hanson G.W., Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics, 2008, 103: 064302. 
[49] Dai S., Fei Z., Ma Q., Rodin A.S., Wagner M., McLeod A.S., Liu M.K., Gannett W., Regan W., Watanabe K., Taniguchi T., Thiemens M., Dominguez G., Neto A., Zettl A., Keilmann F., Jarillo-Herrero P., Fogler M.M., Basov D.N., Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science, 2014, 343: 1125–1129. 
[50] Zhao B., Chen K., Buddhiraju S., Bhatt G., Lipson M., Fan S., High-performance near-field thermophotovoltaics for waste heat recovery. Nano Energy, 2017, 41: 344–350.
[51] Liao T., Yang Z., Peng W., Chen X., Chen J., Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency. Energy Conversion and Management, 2017, 152: 214–220.
[52] Rumyanstev S., Handbook series on semiconductor parameters, 1996. 
[53] Kadi F., Winzer T., Knorr A., Malic E., Impact of doping on the carrier dynamics in graphene. Scientific Reports, 2015, 5: 1–7. 
[54] Zare S., Zeinali T.B., Edalatpour S., Effect of nonlocal electrical conductivity on near-field radiative heat transfer between graphene sheets. Physical Review B, 2022, 105: 1–9.

基金

This work is supported by the National Natural Science Foundation of China (Grant No. 52276075) and sponsored by the Natural Science Foundation of Shanghai (Grant No. 21ZR1433500).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024
PDF(2860 KB)

91

Accesses

0

Citation

Detail

段落导航
相关文章

/