Numerical Simulation Study on Influence of Equation of State on Internal Flow Field and Performance of S-CO2 Compressor

ZHANG Lei, YANG Zhenyu, SUN Enhui, ZHANG Qian, AN Guangyao, YUAN Wei

热科学学报 ›› 2024, Vol. 33 ›› Issue (3) : 888-898.

PDF(4973 KB)
PDF(4973 KB)
热科学学报 ›› 2024, Vol. 33 ›› Issue (3) : 888-898. DOI: 10.1007/s11630-024-1944-x  CSTR: 32141.14.s11630-024-1944-x

Numerical Simulation Study on Influence of Equation of State on Internal Flow Field and Performance of S-CO2 Compressor

作者信息 +

Numerical Simulation Study on Influence of Equation of State on Internal Flow Field and Performance of S-CO2 Compressor

Author information +
文章历史 +

摘要

压缩机在近临界区的低功耗是实现超临界CO2布雷顿循环高效运行的关键因素。在压缩机的数值模拟中,在临界点附近CO2物性的快速变化使得冷凝现象难以捕捉。本文研究了流体物理性质对冷凝现象的影响。首先比较了SRK EOS(状态方程)、PR EOS和SW EOS中CO2的物理性质差异,然后对喷嘴和压缩机进行了仿真。结果表明,3种EOSs预测的凝结位置基本一致。与SW EOS相比,PR和SRK EOS预测的最大凝结质量分数差异分别为5.7%和11.5%,总压比差异分别为0.3%和3.8%。结果表明,PR EOS可用于工程实际的数值模拟。由于其物性计算结果更接近实际物性,而物性变化更平缓,具有相当的精度和数值稳定性。

Abstract

The low power consumption of the near-critical compressor is the key factor for the high efficiency of supercritical CO2 Brayton cycle. In the numerical simulation of the compressor, the rapid changes in the thermophysical properties of the CO2 near the critical point make it difficult to capture the condensation phenomenon. This paper investigates the influence of fluid physical properties on the condensation phenomenon. Firstly, the differences in the physical properties of CO2 in the SRK EOS (equation of state), PR EOS, and SW EOS are compared. Then, the simulation of nozzles and compressors were carried out and discussed. Results show that the condensation positions predicted by the three EOSs are basically the same. Compared with SW EOS, the disparities between the maximum condensation mass fraction predicted by the PR and SRK EOSs is 5.7% and 11.5%, and that of total pressure ratio is 0.3% and 3.8%, respectively. The results show that PR EOS can be considered for numerical simulation in engineering practice. Since its physical property calculation results are closer to the actual physical properties while the physical properties change more gently, it has considerable accuracy and numerical stability.

关键词

supercritical carbon dioxide / equation of state / centrifugal compressor / numerical simulation / condensation

Key words

supercritical carbon dioxide / equation of state / centrifugal compressor / numerical simulation / condensation

引用本文

导出引用
ZHANG Lei , YANG Zhenyu , SUN Enhui , ZHANG Qian , AN Guangyao , YUAN Wei. Numerical Simulation Study on Influence of Equation of State on Internal Flow Field and Performance of S-CO2 Compressor[J]. 热科学学报, 2024, 33(3): 888-898 https://doi.org/10.1007/s11630-024-1944-x
ZHANG Lei , YANG Zhenyu , SUN Enhui , ZHANG Qian , AN Guangyao , YUAN Wei. Numerical Simulation Study on Influence of Equation of State on Internal Flow Field and Performance of S-CO2 Compressor[J]. Journal of Thermal Science, 2024, 33(3): 888-898 https://doi.org/10.1007/s11630-024-1944-x

参考文献

[1] Feher E.G., The supercritical thermodynamic power cycle. Energy Conversion, 1968, 8(2): 85–90. 
[2] Dostal V., Hejzlar P., Driscoll M.J., The supercritical carbon dioxide power cycle: Comparison to other advanced power cycles. Nuclear Technology, 2006, 154(3): 283–301.
[3] Yang Z., Jiang H., Zhuge W., et al., Flow loss mechanism in a supercritical carbon dioxide centrifugal compressor at low flow rate conditions. Journal of Thermal Science, 2023, 33: 114–125. 
[4] Yang J., Yang Z., Duan Y., Design optimization and operating performance of S-CO2 Brayton cycle under fluctuating ambient temperature and diverse power demand scenarios. Journal of Thermal Science, 2023, 33: 190–206.
[5] Angelino G., Carbon dioxide condensation cycles for power production. Journal of Engineering for Power, 1968, 90(3): 287–295. 
[6] Angelino G., Real gas effects in carbon dioxide cycles. ASME 1969 Gas Turbine Conference and Products Show, Cleveland, Ohio, USA. DOI: 10.1115/69-gt-102.
[7] Yoon H.J., Ahn Y., Lee J.I., Addad Y., Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor. Nuclear Engineering and Design, 2012, 245: 223–232.
[8] Kimball K.J., Clementoni E.M., Supercritical carbon dioxide brayton power cycle development overview. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2012, 44717: 931–940. 
[9] Conboy T., Wright S., Pasch J., et al., Performance characteristics of an operating supercritical CO2 Brayton cycle. Journal of Engineering for Gas Turbines and Power, 2012, 134(11): 111703.
[10] Wright S.A., Radel R.F., Vernon M.E., et al., Operation and analysis of a supercritical CO2 Brayton cycle. Sandia Report, No. SAND2010-0171, 2010. DOI: 10.2172/984129.
[11] Colonna P., Harinck J., Rebay S., et al., Real-gas effects in organic Rankine cycle turbine nozzles. Journal of Propulsion and Power, 2008, 24(2): 282–294. 
[12] Harinck J., Colonna P., Guardone A., et al., Influence of thermodynamic models in two-dimensional flow simulations of turboexpanders. Journal of Turbomachinery, 2010, 132(1): 011001. 
[13] Takagi K., Muto Y., Ishizuka T., et al., Research on flow characteristics of supercritical CO2 axial compressor blades by CFD analysis. Journal of Power and Energy Systems, 2010, 4(1): 138–149.
[14] Yao L., Zou Z., A one-dimensional design methodology for supercritical carbon dioxide brayton cycles: Integration of cycle conceptual design and components preliminary design. Applied Energy, 2020, 276: 115354. 
[15] Jeong Y., Son S., Cho S.K., Baik S., Lee J.I., Evaluation of supercritical CO2 compressor off-design performance prediction methods. Energy, 2020, 213: 119071.
[16] Zhang L., Zheng Z., Zhang Q., et al., Study of rotating stall in a centrifugal compressor with wide vaneless diffuser. Journal of Thermal Science, 2020, 29(3): 743–752.
[17] Zhang L., He R., Wang S., et al., A review of rotating stall in vaneless diffuser of centrifugal compressor. Journal of Thermal Science, 2020, 29(2): 323–342.
[18] Baltadjiev N.D., Lettieri C., Spakovszky Z.S., An investigation of real gas effects in supercritical CO2 centrifugal compressors. Journal of Turbomachinery, 2015, 137(9): 091003. 
[19] Rinaldi E., Pecnik R., Colonna P., Steady state CFD investigation of a radial compressor operating with supercritical CO2. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, Texas, USA, 2013, 8: 1–11. DOI: 10.1115/gt2013-94580.
[20] Ameli A., Turunen-Saaresti T., Backman J., Numerical investigation of the flow behavior inside a supercritical CO2 centrifugal compressor. Journal of Engineering for Gas Turbines and Power, 2018, 140(12): 122604. 
[21] Lee J., Cho S.K., Cha J.E., Lee J.I., Sensitivity study of S-CO2 compressor design for different real gas approximations. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2016, pp. 1–9. DOI: 10.1115/gt2016-57100.
[22] Ameli A., Afzalifar A., Turunen-Saaresti T., Backman J., Effects of real gas model accuracy and operating conditions on supercritical CO2 compressor performance and flow field. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2018, 140: 1–8. DOI: 10.1115/gt2017-63570.
[23] Baltadjiev N.D., Lettieri C., Spakovszky Z.S., An investigation of real gas effects in supercritical CO2 centrifugal compressors. Journal of Turbomachinery, 2015, 137(9): 091003. 
[24] Span R., Wagner W., A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509–1596.
[25] Zhao Q., Mecheri M., Neveux T., Privat R., Jaubert J.N., Selection of a proper equation of state for the modeling of a supercritical CO2 brayton cycle: Consequences on the process design. Industrial & Engineering Chemistry Research, 2017, 56(23): 6841–6853.
[26] Le Guennec Y., Privat R., Jaubert J.N., Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub-and super-critical domains. Fluid Phase Equilibria, 2016, 429: 301–312.
[27] Peng D.Y., Robinson D.B., A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59–64.
[28] Soave G., Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 1972, 27(6): 1197–1203.
[29] Lemmon E.W., Huber M.L., McLinden M.O., NIST standard reference database 23: Reference fluid thermodynamic and transport properties (REFPROP), Version 9.0. 2010.
[30] Brinckman K.W., Hosangadi A., Liu Z., Weathers T., Numerical simulation of non-equilibrium condensation in supercritical CO2 compressors. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2019, 9: 1–10. DOI: 10.1115/gt2019-90497.

基金

The authors would like to acknowledge the supports of National Natural Science Foundation of China (Grant No. 52076079, 52206010), Natural Science Foundation of Hebei Province, China (Grant No. E2020502013), and Fundamental Research Funds for the Central Universities, China (Grant No. 2021MS079).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024
PDF(4973 KB)

95

Accesses

0

Citation

Detail

段落导航
相关文章

/