[1]
Feher E.G., The supercritical thermodynamic power cycle. Energy Conversion, 1968, 8(2): 85–90.
[2]
Dostal V., Hejzlar P., Driscoll M.J., The supercritical carbon dioxide power cycle: Comparison to other advanced power cycles. Nuclear Technology, 2006, 154(3): 283–301.
[3]
Yang Z., Jiang H., Zhuge W., et al., Flow loss mechanism in a supercritical carbon dioxide centrifugal compressor at low flow rate conditions. Journal of Thermal Science, 2023, 33: 114–125.
[4]
Yang J., Yang Z., Duan Y., Design optimization and operating performance of S-CO2 Brayton cycle under fluctuating ambient temperature and diverse power demand scenarios. Journal of Thermal Science, 2023, 33: 190–206.
[5]
Angelino G., Carbon dioxide condensation cycles for power production. Journal of Engineering for Power, 1968, 90(3): 287–295.
[6]
Angelino G., Real gas effects in carbon dioxide cycles. ASME 1969 Gas Turbine Conference and Products Show, Cleveland, Ohio, USA. DOI: 10.1115/69-gt-102.
[7]
Yoon H.J., Ahn Y., Lee J.I., Addad Y., Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor. Nuclear Engineering and Design, 2012, 245: 223–232.
[8]
Kimball K.J., Clementoni E.M., Supercritical carbon dioxide brayton power cycle development overview. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2012, 44717: 931–940.
[9]
Conboy T., Wright S., Pasch J., et al., Performance characteristics of an operating supercritical CO2 Brayton cycle. Journal of Engineering for Gas Turbines and Power, 2012, 134(11): 111703.
[10]
Wright S.A., Radel R.F., Vernon M.E., et al., Operation and analysis of a supercritical CO2 Brayton cycle. Sandia Report, No. SAND2010-0171, 2010. DOI: 10.2172/984129.
[11]
Colonna P., Harinck J., Rebay S., et al., Real-gas effects in organic Rankine cycle turbine nozzles. Journal of Propulsion and Power, 2008, 24(2): 282–294.
[12]
Harinck J., Colonna P., Guardone A., et al., Influence of thermodynamic models in two-dimensional flow simulations of turboexpanders. Journal of Turbomachinery, 2010, 132(1): 011001.
[13]
Takagi K., Muto Y., Ishizuka T., et al., Research on flow characteristics of supercritical CO2 axial compressor blades by CFD analysis. Journal of Power and Energy Systems, 2010, 4(1): 138–149.
[14]
Yao L., Zou Z., A one-dimensional design methodology for supercritical carbon dioxide brayton cycles: Integration of cycle conceptual design and components preliminary design. Applied Energy, 2020, 276: 115354.
[15]
Jeong Y., Son S., Cho S.K., Baik S., Lee J.I., Evaluation of supercritical CO2 compressor off-design performance prediction methods. Energy, 2020, 213: 119071.
[16]
Zhang L., Zheng Z., Zhang Q., et al., Study of rotating stall in a centrifugal compressor with wide vaneless diffuser. Journal of Thermal Science, 2020, 29(3): 743–752.
[17]
Zhang L., He R., Wang S., et al., A review of rotating stall in vaneless diffuser of centrifugal compressor. Journal of Thermal Science, 2020, 29(2): 323–342.
[18]
Baltadjiev N.D., Lettieri C., Spakovszky Z.S., An investigation of real gas effects in supercritical CO2 centrifugal compressors. Journal of Turbomachinery, 2015, 137(9): 091003.
[19]
Rinaldi E., Pecnik R., Colonna P., Steady state CFD investigation of a radial compressor operating with supercritical CO2. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, Texas, USA, 2013, 8: 1–11. DOI: 10.1115/gt2013-94580.
[20]
Ameli A., Turunen-Saaresti T., Backman J., Numerical investigation of the flow behavior inside a supercritical CO2 centrifugal compressor. Journal of Engineering for Gas Turbines and Power, 2018, 140(12): 122604.
[21]
Lee J., Cho S.K., Cha J.E., Lee J.I., Sensitivity study of S-CO2 compressor design for different real gas approximations. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2016, pp. 1–9. DOI: 10.1115/gt2016-57100.
[22]
Ameli A., Afzalifar A., Turunen-Saaresti T., Backman J., Effects of real gas model accuracy and operating conditions on supercritical CO2 compressor performance and flow field. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2018, 140: 1–8. DOI: 10.1115/gt2017-63570.
[23]
Baltadjiev N.D., Lettieri C., Spakovszky Z.S., An investigation of real gas effects in supercritical CO2 centrifugal compressors. Journal of Turbomachinery, 2015, 137(9): 091003.
[24]
Span R., Wagner W., A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509–1596.
[25]
Zhao Q., Mecheri M., Neveux T., Privat R., Jaubert J.N., Selection of a proper equation of state for the modeling of a supercritical CO2 brayton cycle: Consequences on the process design. Industrial & Engineering Chemistry Research, 2017, 56(23): 6841–6853.
[26]
Le Guennec Y., Privat R., Jaubert J.N., Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub-and super-critical domains. Fluid Phase Equilibria, 2016, 429: 301–312.
[27]
Peng D.Y., Robinson D.B., A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59–64.
[28]
Soave G., Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 1972, 27(6): 1197–1203.
[29]
Lemmon E.W., Huber M.L., McLinden M.O., NIST standard reference database 23: Reference fluid thermodynamic and transport properties (REFPROP), Version 9.0. 2010.
[30]
Brinckman K.W., Hosangadi A., Liu Z., Weathers T., Numerical simulation of non-equilibrium condensation in supercritical CO2 compressors. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2019, 9: 1–10. DOI: 10.1115/gt2019-90497.