Application of Response Surface Methodology for Analysing and Optimizing the Finned Solar Air Heater

Vineet SINGH, Vinod Singh YADAV, Vaibhav TRIVEDI, Manoj KUMAR, Niraj KUMAR

热科学学报 ›› 2024, Vol. 33 ›› Issue (3) : 985-1009.

PDF(17303 KB)
PDF(17303 KB)
热科学学报 ›› 2024, Vol. 33 ›› Issue (3) : 985-1009. DOI: 10.1007/s11630-024-1934-z  CSTR: 32141.14.s11630-024-1934-z

Application of Response Surface Methodology for Analysing and Optimizing the Finned Solar Air Heater

  • Vineet SINGH1*, Vinod Singh YADAV2, Vaibhav TRIVEDI1, Manoj KUMAR1, Niraj KUMAR3
作者信息 +

Application of Response Surface Methodology for Analysing and Optimizing the Finned Solar Air Heater

  • Vineet SINGH1*, Vinod Singh YADAV2, Vaibhav TRIVEDI1, Manoj KUMAR1, Niraj KUMAR3
Author information +
文章历史 +

摘要

In this research paper, a solar air heater with triangular fins has been experimentally analysed and optimized. Initially, an experimental set-up of a solar air heater having triangular fins has been developed at the location of 28.10°N, 78.23°E. The heat transfer rate through fins and fins efficiency has been determined by the Finite Difference Method model equations. The experimental data and modeled data of response parameters have been optimized in MINITAB-17 software by the Response Surface Methodology tool. For creating the response surface design, three input parameters have been selected namely solar intensity, Reynolds number, and fin base-to-height ratio. The range of solar intensity, Reynolds number, and fin base-to-height ratio is 600 to 1000 W/m2, 4000 to 6000, and 0.4 to 0.8 respectively. The response surface design has been analyzed by calculating the outlet temperature, friction factor, Nusselt number, fin efficiency, thermal performance factor, and exergy efficiency. The optimum settings of input parameters: solar intensity is 1000 W/m2; Reynolds number is 4969.7, and the fin base to height ratio is 0.6060, on which these response: namely outlet temperature of 92.531°C, friction factor of 0.2350, Nusselt number of 127.761, thermal efficiency of 50.836%, thermal performance factor of 1.4947, and exergy efficiency of 8.762%.

Abstract

In this research paper, a solar air heater with triangular fins has been experimentally analysed and optimized. Initially, an experimental set-up of a solar air heater having triangular fins has been developed at the location of 28.10°N, 78.23°E. The heat transfer rate through fins and fins efficiency has been determined by the Finite Difference Method model equations. The experimental data and modeled data of response parameters have been optimized in MINITAB-17 software by the Response Surface Methodology tool. For creating the response surface design, three input parameters have been selected namely solar intensity, Reynolds number, and fin base-to-height ratio. The range of solar intensity, Reynolds number, and fin base-to-height ratio is 600 to 1000 W/m2, 4000 to 6000, and 0.4 to 0.8 respectively. The response surface design has been analyzed by calculating the outlet temperature, friction factor, Nusselt number, fin efficiency, thermal performance factor, and exergy efficiency. The optimum settings of input parameters: solar intensity is 1000 W/m2; Reynolds number is 4969.7, and the fin base to height ratio is 0.6060, on which these response: namely outlet temperature of 92.531°C, friction factor of 0.2350, Nusselt number of 127.761, thermal efficiency of 50.836%, thermal performance factor of 1.4947, and exergy efficiency of 8.762%.

关键词

solar air heater / optimization / fins / exergy / response surface methodology / air

Key words

solar air heater / optimization / fins / exergy / response surface methodology / air

引用本文

导出引用
Vineet SINGH, Vinod Singh YADAV, Vaibhav TRIVEDI, Manoj KUMAR, Niraj KUMAR. Application of Response Surface Methodology for Analysing and Optimizing the Finned Solar Air Heater[J]. 热科学学报, 2024, 33(3): 985-1009 https://doi.org/10.1007/s11630-024-1934-z
Vineet SINGH, Vinod Singh YADAV, Vaibhav TRIVEDI, Manoj KUMAR, Niraj KUMAR. Application of Response Surface Methodology for Analysing and Optimizing the Finned Solar Air Heater[J]. Journal of Thermal Science, 2024, 33(3): 985-1009 https://doi.org/10.1007/s11630-024-1934-z

参考文献

[1] Bauri K.S., Prasad K.S., A CFD-based thermal analysis of solar air heater duct artificially roughened with “S” shape ribs on absorber plate. AIP Conferece Proceeding, 2021, 2341: 030009. doi: 10.1063/5.0050359.
[2] Xiao H., Wang J., Liu Z., Liu W., Turbulent heat transfer optimization for solar air heater with variation method based on exergy destruction minimization principle. International Journal of Heat and Mass Transfer, 2019, 136: 1096–1105. doi: 10.1016/J.IJHEATMASSTRANSFER.2019.03.071.
[3] Altfeld K., Leiner W., Fiebig M., Second law optimization of flat-plate solar air heaters Part I: The concept of net exergy flow and the modeling of solar air heaters. Solar Energy, 1988, 41(2): 127–132.  DOI: 10.1016/0038-092X(88)90128-4.
[4] Mohanty P.C., Behura K.A., Singh R.M., et al., Parametric performance optimization of three sides roughened solar air heater. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 43(18): 2319–2338. doi: 10.1080/15567036.2020.1752855.
[5] Mahanand Y., Senapati R.J., Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate: A comparative study. International Journal of Thermal Sciences, 2021, 161(1): 106747. DOI: 10.1016/J.IJTHERMALSCI.2020.106747.
[6] Acır A., Canlı E.M., Ata I., Çakıroğlu R., Parametric optimization of energy and exergy analyses of a novel solar air heater with grey relational analysis. Applied Thermal Engineering, 2017, 122 (1): 330–338.  DOI: 10.1016/J.APPLTHERMALENG.2017.05.018.
[7] Gill S.R., Hans S.V., Singh P.R., Optimization of artificial roughness parameters in a solar air heater duct roughened with hybrid ribs. Applied Thermal Engineering, 2021, 191(1): 116871. DOI: 10.1016/J.APPLTHERMALENG.2021.116871.
[8] Moradi R., Kianifar A., Wongwises S., Optimization of a solar air heater with phase change materials: Experimental and numerical study. Experimental Thermal Fluid Science, 2017, 89(1): 41–49. DOI: 10.1016/J.EXPTHERMFLUSCI.2017.07.011.
[9] Yadav S.A., Shrivastava V., Sharma A., Dwivedi K.M.,  Numerical simulation and CFD-based correlations for artificially roughened solar air heater. Materials Today Proceeding, 2021, 47(1): 2685–2693. DOI: 10.1016/J.MATPR.2021.02.759.
[10] Wang T., Zhao Y., Diao Y., et al., Experimental investigation of a novel thermal storage solar air heater (TSSAH) based on flat micro-heat pipe arrays. Renewable Energy, 2021, 173(1): 639–651. DOI: 10.1016/J.RENENE.2021.04.027.
[11] Sureandhar G., Srinivasan G., Muthukumar P., Senthilmurugan S., Performance analysis of arc rib fin embedded in a solar air heater. Thermal Science Engineering Progress, 2021, 23(3): 100891. DOI: 10.1016/J.TSEP.2021.100891.
[12] Kumar R., Goel V., Singh P., et al., Performance evaluation and optimization of solar assisted air heater with discrete multiple arc shaped ribs. Journal of Energy Storage, 2019, 26(1): 100978.  DOI: 10.1016/J.EST.2019.100978.
[13] Parsa H., Saffar-Avval M., Hajmohammadi R.M., 3D simulation and parametric optimization of a solar air heater with a novel staggered cuboid baffles. International Journal of Mechanical Science, 2021, 205(2): 106607.  DOI: 10.1016/J.IJMECSCI.2021.106607.
[14] Qader S.B., Supeni E.E., Ariffin A.K.M., et al., RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater. Renewable Energy, 2019, 136: 48–68. DOI: 10.1016/J.RENENE.2018.12.099.
[15] Benhamza A., Boubekri A., Atia A., et al., Multi-objective design optimization of solar air heater for food drying based on energy, exergy and improvement potential. Renewable Energy, 2021, 169: 1190–1209.  DOI: 10.1016/J.RENENE.2021.01.086.
[16] Salih M.M.M., Alomar R.O., Yassien S.N.H., Impacts of adding porous media on performance of double-pass solar air heater under natural and forced air circulation processes. International Journal of Mechanical Science, 2021, 210: 106738.  DOI: 10.1016/J.IJMECSCI.2021.106738.
[17] Abo-Elfadl S., Yousef S.M.,  El-Dosoky F.M., Hassan H., Energy, exergy, and economic analysis of tubular solar air heater with porous material: An experimental study. Applied Thermal Engineering, 2021, 196: 117294.
[18] Matheswaran M.M., Arjunan V.T., Muthusami T., et al., A case study on thermo-hydraulic performance of jet plate solar air heater using response surface methodology. Case Studies in Thermal Engineering, 2022, 34: 101983. DOI: 10.1016/j.csite.2022.101983.
[19] Zulkifle I., Alwaeli A.H.A., Ruslan H.M., et al., Numerical investigation of V-groove air-collector performance with changing cover in Bangi, Malaysia. Case Studies Thermal Engineering, 2018, 12: 587–599.  DOI: 10.1016/J.CSITE.2018.07.012.
[20] Aboueian J., Shahsavar A., Feasibility study of improving the energy and exergy performance of a concentrating photovoltaic/thermal system by the simultaneous application of biological water-silver nanofluid and sheet-and-grooved tube collector: Two-phase mixture model. Engineering Analysis with Boundry Element, 2022, 144: 433–440. DOI: 10.1016/J.ENGANABOUND.2022.08.039.
[21] Al-Damook M., Obaid A.H.Z., Qubeissi A.M., et al., CFD modeling and performance evaluation of multipass solar air heaters. Numerical Heat Transfer Part A: Applications, 2019, 76: 1–27.
[22] Gawande B.V., Dhoble S.A., Zodpe B.D., Chamoli S., Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs. Solar Energy, 2016, 131: 275–295.  doi: 10.1016/j.solener.2016.02.040.
[23] Yadav S.A., Bhagoria L.J., Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach. Renewable and Sustainable Energy Reviews, 2013, 23: 60–79. DOI: 10.1016/j.rser.2013.02.035.
[24] Khanlari A., Sözen A., Tuncer D.A., et al., Numerical and experimental analysis of longitudinal tubular solar air heaters made from plastic and metal waste materials. Heat Transfer Research, 2021, 52(10): 19–45. DOI: 10.1615/HEATTRANSRES.2021038204.
[25] Yadav S.A., Bhagoria L.J., A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate. Energy, 2013, 55: 1127–1142. DOI: 10.1016/J.ENERGY.2013.03.066.
[26] Sun W., Ji J., He W., Influence of channel depth on the performance of solar air heaters. Energy, 2010, 35: 4201–4207. DOI: 10.1016/j.energy.2010.07.006.
[27] Singh P.A., Singh P.O., Performance enhancement of a curved solar air heater using CFD. Solar Energy, 2022,  174: 556–569. DOI: 10.1016/j.solener.2018.09.053.
[28] Mahanand Y., Senapati R.J., Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate: A comparative study. International Journal of Thermal Sciences, 2021, 161: 106747. DOI: 10.1016/J.IJTHERMALSCI.2020.106747.
[29] Yadav S.A., Shrivastava V., Sharma A., Dwivedi K.M., Numerical simulation and CFD-based correlations for artificially roughened solar air heater. Materials Today Proceeding, 2021, 47: 2685–2693. DOI: 10.1016/J.MATPR.2021.02.759.
[30] Sahu K.M., Prasad K.R., Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate. Renewable Energy, 2016, 96: 233–243. DOI: 10.1016/j.renene.2016.04.083.
[31] Singh S., Dhiman P., Thermal and thermohydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined approach. Energy, 2014, 72: 344–359.  DOI: 10.1016/j.energy.2014.05.044.
[32] Azadani N.L., Gharouni N., Multi objective optimization of cylindrical shape roughness parameters in a solar air heater. Renewable Energy, 2021, 179: 1156–1168. DOI: 10.1016/j.renene.2021.07.084.
[33] Huddar B.V., Razak A., Cuce E., et al., Thermal performance study of solar air dryers for cashew kernel: a comparative analysis and modelling using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). International Journal Photoenergy, 2022, pp: 4598921. DOI: 10.1155/2022/4598921.
[34] Çengel A.Y., Ghajar J.A., Kanoǧlu M., Heat and mass transfer, fifth ed., Tata Magrahil, 2014 .
[35] Sobamowo G.M., Oguntala A.G., Yinusa A.A., Adedibu O. A., Analysis of transient heat transfer in a longitudinal fin with functionally graded material in the presence of magnetic field using finite difference method. World Scientific News, 2019, 137: 166–187.
[36] Han Y.M., Cho J.S., Kang H.S., Analysis of a one-dimensional fin using the analytic method and the finite difference method. Journal of the Korean Society for Industrial and Applied Mathematics, 2005, 9(1): 91–98.
[37] Peng H.S., Chen C.L., Hybrid differential transformation and finite difference method to annular fin with temperature-dependent thermal conductivity.  International Journal of Heat and Mass Transfer, 2011, 54(11–12): 2427–2433.
DOI: 10.1016/J.IJHEATMASSTRANSFER.2011.02.019.
[38] Gogada S., Roy S., Gupta A., et al., Energy and exergy analysis of solar air heater with trapezoidal ribs based absorber: A comparative analysis. Energy Science Engineering, 2023, 11(2): 585–605.  DOI: 10.1002/ESE3.1347.
[39] Webb L.R., Eckert G.R.E., Application of rough surfaces to heat exchanger design. International Journal of Heat Mass Transfer, 1972, 15(9): 1647–1658.  DOI: 10.1016/0017-9310(72)90095-6.
[40] Cortés A., Piacentini R., Improvement of the efficiency of a bare solar collector by means of turbulence promoters. Applied Energy, 1990, 36(4): 253–261. DOI: 10.1016/0306-2619(90)90001-T.
[41] Duffie A.J., Beckman A.W., Worek M.W., Solar engineering of thermal processes, 2nd ed., Solar Energy Engineering, 1994, 116(1): 67–68. DOI: 10.1115/1.2930068.
[42] Nayak K.J., Sukhatme P., Solar energy thermal collection and storage, third ed. Mcgraw-hill, India, 2010.
[43] Singh V., Yadav S.V., Optimizing the performance of solar panel cooling apparatus by application of response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022.  DOI: 10.1177/09544062221101828.
[44] Singh V., Yadav S.V., Application of RSM to optimize solar pump LCOE and power output. IETE Journal of Research, 2022. DOI: 10.1080/03772063.2022.2069165.
[45] Sharma N., Choudhary R., Multi-objective performance optimization of a ribbed solar air heater. Energy Enviroment Sustainability, 2020, pp. 77–93. DOI: 10.1007/978-981-15-0675-8_6.
[46] Singh V., Yadav S.V., Bhutto K.J., et al., Comparison of different designs of solar air heater with the simple solar heater of having reflecting mirrors. Proceeding of Institution of Mechanical Engineering Part C, 2023, 237(21): 5156–5173. DOI: 10.1177/09544062231158530.
[47] Sahu K.M., Gorai K.V., Saha C.B., Applications of extended surfaces for improvement in the performance of solar air heaters—a detailed systematic review. Enviroment Science. Pollution Research, 2023, 30: 54429–54447. DOI: 10.1007/s11356-023-26360-3.
[48] Sajawal M., Rehman U.T., Ali M.H., et al., Experimental thermal performance analysis of finned tube-phase change material based double pass solar air heater. Case Studies in Thermal Engineering, 2019, 15: 100543. DOI: 10.1016/J.CSITE.2019.100543.
[49] Singh I., Vardhan S., Experimental investigation of an evacuated tube collector solar air heater with helical inserts. Renewale Energy, 2021, 163: 1963–1972. DOI: 10.1016/J.RENENE.2020.10.114.
[50] Manjunath S.M., Karanth V.K., Sharma Y.N., Numerical investigation on heat transfer enhancement of solar air heater using sinusoidal corrugations on absorber plate. International Journal of Mechanical Science, 2018, 138: 219–228. DOI: 10.1016/J.IJMECSCI.2018.01.037.
[51] Mesgar P.M., Heydari A., Wongwises S., Geometry optimization of double pass solar air heater with helical flow path. Solar Energy, 2021, 213: 67–80. DOI: 10.1016/J.SOLENER.2020.11.015.
[52] Ammar M., Mokni A., Mhiri H., Bournot P., Numerical analysis of solar air collector provided with rows of rectangular fins. Energy Reports, 2020, 6: 3412–3424. DOI: 10.1016/J.EGYR.2020.11.252.
[53] Sahu K.M., Kharub M., Matheswaran M.M., Nusselt number and friction factor correlation development for arc-shape apex upstream artificial roughness in solar air heater. Enviroment Science Pollution Research, 2022, 29(43): 65025–65042.  DOI: 10.1007/s11356-022-20222-0.
[54] Sahu K.M., Sharma M., Matheswaran M.M., Maitra K., On the use of longitudinal fins to enhance the performance in rectangular duct of solar air heaters - a review. Journal of Solar Energy Engineering Transaction ASME, 2019, 141(3): 030802. DOI: 10.1115/1.4042827

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024
PDF(17303 KB)

78

Accesses

0

Citation

Detail

段落导航
相关文章

/