Molecular Understanding of Heat Transfer in Ionic-Liquid-based Electric Double Layers

ZENG Ziya, ZENG Liang, WANG Ruzhu, FENG Guang

热科学学报 ›› 2023, Vol. 32 ›› Issue (1) : 192-205.

PDF(7290 KB)
PDF(7290 KB)
热科学学报 ›› 2023, Vol. 32 ›› Issue (1) : 192-205. DOI: 10.1007/s11630-022-1716-4  CSTR: 32141.14.JTS-022-1716-4
传热传质

Molecular Understanding of Heat Transfer in Ionic-Liquid-based Electric Double Layers

  • ZENG Ziya1,2, ZENG Liang2, WANG Ruzhu1, FENG Guang2*
作者信息 +

Molecular Understanding of Heat Transfer in Ionic-Liquid-based Electric Double Layers

  • ZENG Ziya1,2, ZENG Liang2, WANG Ruzhu1, FENG Guang2*
Author information +
文章历史 +

摘要

双电层电容器作为一种新型绿色的储电器件,主要通过电极-电解质所形成的双电层结构来储存电能, 具有功率密度高、循环寿命长、动态响应快等优点,在消费电子产品、电动汽车以及电网等工业领域具有广阔的应用前景。双电层电容器的器件热管理问题关系到其工作性能和使用寿命,而双电层固液界面的传热研究对实现双电层电容器的高效热管理至关重要。在本项工作中,我们采用分子动力学模拟手段,计算了离子液体和石墨电极之间的界面热阻,研究了不同温度下不带电电极和带电电极的界面热阻。模拟结果显示,与不带电电极相比,带负电荷电极附近的界面热阻较之降低了23%,而温度对界面热阻的影响很小。因此,我们推测固液界面处形成的独特双电层结构可能影响着界面热传输性能。我们从离子间距、离子间相互作用力和比热容三个方面研究了电极电荷和工作温度对界面处离子液体传热性能的影响。研究发现,在电极电荷的影响下,双电层结构中的离子间距减小,离子间相互作用和比热容增加,这导致界面处离子液体的热阻降低;而温度对离子间距、离子间相互作用力和比热容的影响很小。

Abstract

Electric double layer capacitors (EDLCs) as promising electrical energy storage devices are faced with thermal management issues, which concern the performance and lifetime of the devices. Heat transfer at the solid-liquid interface has a crucial impact on the thermal management of EDLCs. In this work, the interfacial thermal resistance (Kapitza resistance) of the interface between ionic liquid (IL) and graphite electrode is determined, and the heat transfer resistance in the uncharged/charged system with different temperatures is investigated via molecular dynamics simulations. It is found that Kapitza resistance near the negative-charged interface decreases by 23% compared to that in the uncharged system, while the temperature effect on Kapitza resistance is little in our simulation. The unique ion layer structure of ILs formed at the interface may influence the thermal transport performance. Simulations are performed to investigate the effects of surface charge and working temperature on the heat transfer resistance of interfacial ILs from three aspects: ionic spacing, inter-ion interaction, and heat capacity. With the influence of surface charge, ionic spacing in the electric double layer is found to decrease while the inter-ion interaction and heat capacity increase, leading to the reduction in thermal resistance of interfacial ILs. However, rising temperature has small effects on the three thermal properties, with a slight tendency to increase the thermal resistance of ILs.

关键词

supercapacitor / solid-liquid interface / electric double layer / thermal resistance / molecular dynamics simulation

Key words

supercapacitor / solid-liquid interface / electric double layer / thermal resistance / molecular dynamics simulation

引用本文

导出引用
ZENG Ziya, ZENG Liang, WANG Ruzhu, FENG Guang. Molecular Understanding of Heat Transfer in Ionic-Liquid-based Electric Double Layers[J]. 热科学学报, 2023, 32(1): 192-205 https://doi.org/10.1007/s11630-022-1716-4
ZENG Ziya, ZENG Liang, WANG Ruzhu, FENG Guang. Molecular Understanding of Heat Transfer in Ionic-Liquid-based Electric Double Layers[J]. Journal of Thermal Science, 2023, 32(1): 192-205 https://doi.org/10.1007/s11630-022-1716-4

参考文献

[1] Feng J., Wang Y., Xu Y., Sun Y., Tang Y., Yan X., Ion regulation of ionic liquid electrolytes for supercapacitors. Energy & Environmental Science, 2021, 14: 2859–2882.
[2] Gogotsi Y., Energy storage wrapped up. Nature, 2014, 509(7502): 568–570.
[3] Sun H., Zhu J., Baumann D., Peng L., Xu Y., Shakir I., Huang Y., Duan X., Hierarchical 3D electrodes for electrochemical energy storage. Nature Reviews Materials, 2018, 4(1): 45–60.
[4] Pomerantseva E., Bonaccorso F., Feng X., Cui Y., Gogotsi Y., Energy storage: The future enabled by nanomaterials. Science, 2019, 366(6468): eaan8285.
[5] Voicu I., Louahlia H., Gualous H., Gallay R., Thermal management and forced air-cooling of supercapacitors stack. Applied Thermal Engineering, 2015, 85: 89–99.
[6] Simon P., Gogotsi Y., Perspectives for electrochemical capacitors and related devices. Nature Materials, 2020, 19(11): 1151–1163.
[7] Wang Z., Zhang K., Zhang B., Tong Z., Mao S., Bai H., Lu Y., Ultrafast battery heat dissipation enabled by highly ordered and interconnected hexagonal boron nitride thermal conductive composites. Green Energy & Environment, 2022, 7(6): 1401–1410.
[8] Munteshari O., Lau J., Krishnan A., Dunn B., Pilon L., Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes. Journal of Power Sources, 2018, 374: 257–268.
[9] d’Entremont A., Pilon L., First-principles thermal modeling of electric double layer capacitors under constant-current cycling. Journal of Power Sources, 2014, 246: 887–898.
[10] Luo T., Lloyd J.R., Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: A molecular dynamics study. Advanced Functional Materials, 2012, 22(12): 2495–2502.
[11] Tang Y., Zhang Z., Li L., Guo J., Yang P., Thermal transport enhancement resolution for graphene/Si and graphene/SiC interfaces. International Journal of Thermal Sciences, 2022, 171: 107231.
[12] Giri A., Hopkins P.E., Spectral analysis of thermal boundary conductance across solid/classical liquid interfaces: A molecular dynamics study. Applied Physics Letters, 2014, 105(3): 033106.
[13] Jamshideasli D., Babaei H., Keblinski P., Khodadadi J. M., Interfacial thermal conductance between multi-layer graphene sheets and solid/liquid octadecane: A molecular dynamics study. Journal of Energy Storage, 2021, 37: 102469.
[14] Barisik M., Beskok A., Temperature dependence of thermal resistance at the water/silicon interface. International Journal of Thermal Sciences, 2014, 77: 47–54.
[15] Alexeev D., Chen J., Walther J.H., Giapis K.P., Angelikopoulos P., Koumoutsakos P., Kapitza resistance between few-layer graphene and water: Liquid layering effects. Nano Letters, 2015, 15(9): 5744–5749.
[16] Han H., Merabia S., Muller-Plathe F., Thermal transport at solid-liquid interfaces: high pressure facilitates heat flow through nonlocal liquid structuring. The Journal of Physical Chemistry Letters, 2017, 8(9): 1946–1951.
[17] Ma Y., Zhang Z., Chen J., Sääskilahti K., Volz S., Chen J., Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water. Carbon, 2018, 135: 263–269.
[18] Wei N., Chen Y., Cai K., Zhang Y., Pei Q., Zheng J.-C., Mai Y.-W., Zhao J., Unusual thermal properties of graphene origami crease: A molecular dynamics study. Green Energy & Environment, 2022, 7(1): 86–94.
[19] Wang X., Salari M., Jiang D.-e., Chapman Varela J., Anasori B., Wesolowski D.J., Dai S., Grinstaff M.W., Gogotsi Y., Electrode material-ionic liquid coupling for electrochemical energy storage. Nature Reviews Materials, 2020, 5(11): 787–808.
[20] Rogers R.D., Seddon K.R., Ionic liquids-solvents of the future? Science, 2003, 302(5646): 792–793.
[21] Harrap B.S., Heymann E., Theories of viscosity applied to ionic liquids. Chemical Reviews, 1951, 48(1): 45–67.
[22] Dong K., Liu X., Dong H., Zhang X., Zhang S., Multiscale studies on ionic liquids. Chemical Reviews, 2017, 117(10): 6636–6695.
[23] Qian C., Wang Y., He H., Huo F., Wei N., Zhang S., Lower limit of interfacial thermal resistance across the interface between an imidazolium ionic liquid and solid surface. The Journal of Physical Chemistry C, 2018, 122(38): 22194–22200.
[24] Qian C., Ding B., Wu Z., Ding W., Huo F., He H., Wei N., Wang Y., Zhang X., Ultralow thermal resistance across the solid-ionic liquid interface caused by the charge-induced ordered ionic layer. Industrial & Engineering Chemistry Research, 2019, 58(43): 20109–20115.
[25] Fthenakis Z.G., Zhu Z., Tománek D., Effect of structural defects on the thermal conductivity of graphene: From point to line defects to haeckelites. Physical Review B, 2014, 89(12): 125421.
[26] Yeh I.-C., Berkowitz M.L., Ewald summation for systems with slab geometry. The Journal of Chemical Physics, 1999, 111(7): 3155–3162.
[27] Bi S., Banda H., Chen M., Niu L., Chen M., Wu T., Wang J., Wang R., Feng J., Chen T., Dinca M., Kornyshev A.A., Feng G., Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nature Materials, 2020, 19(5): 552–558.
[28] Yang J., Bo Z., Yang H., Qi H., Kong J., Yan J., Cen K., Reliability of constant charge method for molecular dynamics simulations on EDLCs in nanometer and sub-nanometer spaces. ChemElectroChem, 2017, 4(10): 2486–2493.
[29] Zeng L., Wu T., Ye T., Mo T., Qiao R., Feng G., Modeling galvanostatic charge-discharge of nanoporous supercapacitors. Nature Computational Science, 2021, 1(11): 725–731.
[30] Wang Z., Yang Y., Olmsted D.L., Asta M., Laird B.B., Evaluation of the constant potential method in simulating electric double-layer capacitors. The Journal of Chemical Physics, 2014, 141(18): 184102.
[31] Wang C., Lu H., Wang Z., Xiu P., Zhou B., Zuo G., Wan R., Hu J., Fang H., Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Physical Review Letters, 2009, 103(13): 137801.
[32] Merlet C., Pean C., Rotenberg B., Madden P. A., Simon P., Salanne M., Simulating supercapacitors: Can we model electrodes as constant charge surfaces? The Journal of Physical Chemistry Letters, 2013, 4(2): 264–268.
[33] Hoover W.G., Nonequilibrium molecular dynamics. Annual Review of Physical Chemistry, 1983, 34(1): 103–127.
[34] Wei D., Song Y., Wang F., A simple molecular mechanics potential for mum scale graphene simulations from the adaptive force matching method. The Journal of Chemical Physics, 2011, 134(18): 184704.
[35] Chaban V.V., Voroshylova I.V., Kalugin O.N., A new force field model for the simulation of transport properties of imidazolium-based ionic liquids. Physical Chemistry Chemical Physics, 2011, 13(17): 7910–7920.
[36] Maiti A., Mahan G.D., Pantelides S.T., Dynamical simulations of nonequilibrium processes—Heat flow and the Kapitza resistance across grain boundaries. Solid State Communications, 1997, 102(7): 517–521.
[37] Kim B.H., Beskok A., Cagin T., Molecular dynamics simulations of thermal resistance at the liquid-solid interface. Journal of Chemical Physics, 2008, 129(17): 174701.
[38] Hu L., Desai T., Keblinski P., Thermal transport in graphene-based nanocomposite. Journal of Applied Physics, 2011, 110(3): 033517.
[39] Wei X.F., Luo T.F., Role of ionization in thermal transport of solid polyelectrolytes. Journal of Physical Chemistry C, 2019, 123(20): 12659–12665.
[40] Valkenburg M.E.V., Vaughn R.L., Williams M., Wilkes J.S., Thermochemistry of ionic liquid heat-transfer fluids. Thermochimica Acta, 2005, 425(1–2): 181–188.
[41] Horrocks J.K., McLaughlin E., Thermal conductivity of simple molecules in the condensed state. Transactions of the Faraday Society, 1960, 56: 206.
[42] Zorebski E., Geppert-Rybczynska M., Zorebski M., Acoustics as a tool for better characterization of ionic liquids: a comparative study of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl) sulfonyl]imide room-temperature ionic liquids. Journal of Physical Chemistry B, 2013, 117(14): 3867–3876.
[43] Zorębski E., Zorębski M., Dzida M., Goodrich P., Jacquemin J., Isobaric and isochoric heat capacities of imidazolium-based and pyrrolidinium-based ionic liquids as a function of temperature: Modeling of isobaric heat capacity. Industrial & Engineering Chemistry Research, 2017, 56(9): 2592–2606.
[44] Allen M.P., Tildesley D.J., Computer simulation of liquids. Clarendon Press, Oxford University Press, 1987.
[45] Rapaport D.C., The art of molecular dynamics simulation. Cambrige University Press, Cambrige, 1995.
[46] Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P.L., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 2006, 313(5794): 1760–1763.
[47] Largeot C., Portet C., Chmiola J., Taberna P.L., Gogotsi Y., Simon P., Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 2008, 130(9): 2730–2731.
[48] Yasaei P., Hemmat Z., Foss C. J., Li S. J., Hong L., Behranginia A., Majidi L., Klie R. F., Barsoum M. W., Aksamija Z., Salehi-Khojin A., Enhanced thermal boundary conductance in few-layer Ti3C2 MXene with encapsulation. Advanced Materials, 2018, 30(43): 1801629.
[49] Bai L., Li Q., Yang Y., Ling S., Yu H., Liu S., Li J., Chen W., Biopolymer nanofibers for nanogenerator development. Research, 2021, 2021: 1843061.

基金

This work was financially supported by the National Natural Science Foundation of China (52161135104, 51876072) and the Hubei Provincial Natural Science Foundation of China (2020CFA093). The authors also thank Beijing PARATERA Tech CO., Ltd. for providing HPC resources to accomplish simulations in this work. This work is also supported by the Program for HUST Academic Frontier Youth Team.

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
PDF(7290 KB)

51

Accesses

0

Citation

Detail

段落导航
相关文章

/