Effect of Squealer Tip with Deep Scale Depth on the Aero-thermodynamic Characteristics of Tip Leakage Flow

BI Shuai, WANG Longfei, WANG Feilong, WANG Lei, LI Ziqiang

热科学学报 ›› 2022, Vol. 31 ›› Issue (5) : 1773-1789.

PDF(10023 KB)
PDF(10023 KB)
热科学学报 ›› 2022, Vol. 31 ›› Issue (5) : 1773-1789. DOI: 10.1007/s11630-022-1683-4  CSTR: 32141.14.JTS-022-1683-4
气动

Effect of Squealer Tip with Deep Scale Depth on the Aero-thermodynamic Characteristics of Tip Leakage Flow

  • BI Shuai, WANG Longfei*, WANG Feilong, WANG Lei, LI Ziqiang
作者信息 +

Effect of Squealer Tip with Deep Scale Depth on the Aero-thermodynamic Characteristics of Tip Leakage Flow

  • BI Shuai, WANG Longfei*, WANG Feilong, WANG Lei, LI Ziqiang
Author information +
文章历史 +

摘要


本文对轴流式涡轮的动叶顶部的大尺度深槽叶尖区域的气动热力特性展开数值研究,并与传统常规槽深的叶尖的气热特性展开对比。采用的数值计算方法与公开的实验数据进行了对比。研究中考虑了凹槽深度和叶尖间隙高度两个因素。结果表明:带常规槽深的叶尖凹槽内部的回流涡的尺度随凹槽深度的增加而变大。当凹槽深度由常规尺度发展为大尺度时,凹槽内的速度和高熵产率(EPR)分布的均匀性下降。但是,凹槽深度增至10%叶高时,凹槽内部容积增大,由此增大了间隙和凹槽内两区域的总熵产率。相较于1%叶高的凹槽叶尖,10%叶高的凹槽叶尖的无量纲的总熵产率(DEPR)的增幅最大,高达43.54%,对应的间隙相对泄漏量减少20.6%。在换热方面,凹槽深度大幅增加至10%叶高后,巨大的凹槽容腔可以停留更多的低速流体来覆盖凹槽底部,这削弱了对流换热强度从而缩减了高换热区域,无量纲的平均换热系数相较于1%叶尖的降低40.26%。此外,大尺度深槽叶尖在小间隙时对抑制泄漏更有效,无量纲的平均换热系数的降低幅度随着间隙增大而降低,故在1%叶高的间隙下,凹槽底部的无量纲的平均换热系数降幅最多,在槽深为30%叶高时可以降低72.6%。

Abstract

In this paper, the aero-thermal performance of squealer tips with deep-scale depth is numerically investigated in an axial flow turbine, which is compared with the squealer tip with traditional cavity depth. Numerical methods were validated with experimental data. The effect of cavity depth and tip clearance was considered. The numerical results show that for the squealer tip with conventional cavity depth, the size of the reflux vortex enlarges as the cavity depth increases. The velocity and uniformity of high entropy production rate (EPR) inside the cavity reduce obviously with the cavity developing into deep-scale. However, the increase of depth 10% of the blade span (H) leads to enlargement of cavity volume, which increases the total entropy production rate. And the overall dimensionless entropy production rate (DEPR) of gap and cavity obtains a maximum increase of 43.54% in contrast to the case with 1%H depth cavity. As a result, the relative leakage mass flow rate reduces by 20.6% as the cavity depth increases from 1% to 10%. Given the heat transfer, as the cavity significantly increases to 10%H, the enhanced cavity volume results in a more enormous cavity vortex with low velocity covering the floor, which weakens the convective heat transfer intensity and reduces the area of high heat transfer. The normalized average heat transfer coefficient at the cavity bottom reduces by 40.26% compared to the cavity depth of 1%H. In addition, the deep-scale cavity is more effective in inhibiting leakage flow at smaller tip clearance. The reduction amplitude of normalized average heat transfer coefficient at the squealer floor decreases as tip clearance increases, which reduces at most by about 72.6% for the tip clearance of 1%H.

关键词

squealer tip / turbine aerothermodynamics / tip leakage flow / deep-scale depth / heat transfer / numerical methods

Key words

squealer tip / turbine aerothermodynamics / tip leakage flow / deep-scale depth / heat transfer / numerical methods

引用本文

导出引用
BI Shuai, WANG Longfei, WANG Feilong, WANG Lei, LI Ziqiang. Effect of Squealer Tip with Deep Scale Depth on the Aero-thermodynamic Characteristics of Tip Leakage Flow[J]. 热科学学报, 2022, 31(5): 1773-1789 https://doi.org/10.1007/s11630-022-1683-4
BI Shuai, WANG Longfei, WANG Feilong, WANG Lei, LI Ziqiang. Effect of Squealer Tip with Deep Scale Depth on the Aero-thermodynamic Characteristics of Tip Leakage Flow[J]. Journal of Thermal Science, 2022, 31(5): 1773-1789 https://doi.org/10.1007/s11630-022-1683-4

参考文献

[1] Bunker R.S., Axial turbine blade tips: function, design, and durability. Journal of Propulsion and Power, 2006, 22(2): 271–285.
[2] Bunker R.S., A review of turbine blade tip heat transfer. Annals of the New York Academy of Science, 2001, 934(1): 64–79. 
[3] Sun Q., Ji D., Guo H., Research on gas turbine blade material and Fatigue Creep. Turbine Technology, 2017, 59(2): 81–83. 
[4] Booth T.C., Dodge P.R., Hepworth H.K., Rotor-tip leakage Part I: basic methodology. ASME, 1981, Paper 81-GT-71. 
[5] Yamamoto A., Interaction mechanisms between tip leakage flow and the passage vortex in a linear turbine rotor cascade. Journal of Turbomachinery, 1988, 110(3): 329–338. 
[6] Denton J.D., Loss mechanisms in turbomachines. Journal of Turbomachinery, 1993, 115(4): 621–656. 
[7] Azad G.S., Han J.C., Teng S., et al., Heat transfer and pressure distributions on a gas turbine blade Tip. Journal of Turbomachinery, 2000, 122(4): 717–724.
[8] Kwak J.S., Han J.C., Heat transfer coefficients of a turbine blade-tip and near-tip regions. Journal of Thermophysics & Heat Transfer, 2003, 17(3): 297–303.
[9] Azad GM.S., Han J.C., Bunker R.S., Lee C.P., Effect of squealer geometry arrangement on a gas turbine blade tip heat transfer. Journal of Heat Transfer, 2002, 124: 452–459.
[10] Zeng F., Du J., Huang L., et al., An experimental method for squealer tip flow field considering relative casing motion. Chinese Journal of Aeronautics, 2020, 33(7): 1942–1952.
[11] Zeng F., Zhang W., Wang Y., et al., Effects of squealer geometry of turbine blade tip on the tip-leakage flow and loss. Journal of Thermal Science, 2021, 30(4): 1376–1387.
[12] Zhou C., Hodson H., Numerical investigation of thermal performance of unshrouded HP turbine blade tips. International Journal of Turbo & Jet Engines, 2009, 26(4): 277–284.
[13] Kavurmacioglu L., Maral H., Senel C.B., et al., Performance of partial and cavity type squealer tip of a HP turbine blade in a linear cascade. International Journal of Aerospace Engineering, 2018, Article: 3262164.
[14] Yang H., Ching H., et al., Turbine rotor with various tip configurations flow and heat transfer prediction. Journal of Thermophysics & Heat Transfer, 2006, 20(1): 80–91.
[15] Liu J.J., Li P., Zhang C., et al., Flow field and heat transfer past an unshrouded gas turbine blade tip with different shapes. Journal of Thermal Science, 2013, 22(2): 128–134.
[16] Zhong J., Wu W., Han S., Research progress of tip winglet technology in compressor. Journal of Thermal Science, 2021, 30(1): 18–31.
[17] Cui W., Wang X., Yao F., Zhao Q., Liu Y., Liu L., Wang C., Yang L., Effects of width variation of pressure-side winglet on tip flow structure in a transonic rotor. Journal of Thermal Science, 2022, 31(1): 141–150.
[18] Zou Z., Shao F., Li Y., et al., Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance. Energy, 2017, 138: 167–184.
[19] Zou Z., Xuan L., Chen Y., et al., Effects of flow structure on heat transfer of squealer tip in a turbine rotor blade. International Communications in Heat and Mass Transfer, 2020, 114: 104588.
[20] Kim J., Seo W., Chung H., et al., Effect of shelf squealer tip configuration on aerothermal performance of gas turbine blade. International Journal of Thermal Sciences, 2021, 168: 107056.
[21] Yan X., Huang Y., He K., et al., Numerical investigations into the effect of squealer-winglet blade tip modifications on aerodynamic and heat transfer performance. International Journal of Heat & Mass Transfer, 2016, 103: 242–253.
[22] Choi S.M., Bang M., Moon H., et al., Wake effects on heat transfer from a turbine blade tip with different configurations and its corresponding shroud. International Communications in Heat and Mass Transfer, 2021, 126: 105333.
[23] Du K., Li Z., Li J., et al., Influences of a multi-cavity tip on the blade tip and the over tip casing aerothermal performance in a high-pressure turbine cascade. Applied Thermal Engineering, 2019, 147: 347–360. 
[24] Jiang S., Li Z., Li J., et al., Effects of the novel rib layouts on the tip leakage flow pattern and heat transfer performance of turbine blade. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 2020, 234(8): 1446–1459.
[25] Lee S.W., Chae B.J., Effects of squealer rim height on aerodynamic losses downstream of a high-turning turbine rotor blade. Experimental Thermal & Fluid Science, 2008, 32(8): 1440–1447.
[26] Zhou C., Effects of endwall motion on thermal performance of cavity tips with different squealer width and height. International Journal of Heat and Mass Transfer, 2015, 91: 1248–1258.
[27] Shi W., Chen P., Li X., et al., Uncertainty quantification of the effects of squealer tip geometry deviation on aerothermal performance. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy, 2020, 234(7): 1026–1038.
[28] Kwak J., Ahn J., Han J., Effects of rim location, rim height, and tip clearance on the tip and near tip region heat transfer of a gas turbine blade. International Journal of Heat and Mass Transfer, 2004, 47(26): 5651–5663. 
[29] Zhou C., Hodson H., Squealer geometry effects on aerothermal performance of tip-leakage flow of cavity tips. Journal of Propulsion and Power, 2012, 28(3): 556–567.
[30] Park J., Lee D., Rhee D., et al., Heat transfer and film cooling effectiveness on the squealer tip of a turbine blade. Energy, 2014, 72: 331–343.
[31] Sakaoglu S., Kahveci H.S., Effect of cavity depth on thermal performance of a cooled blade tip under rotation. International Journal of Heat and Mass Transfer, 2019, 143: 118561.
[32] Bang M., Choi S., Sohn H., et al., Effects of unsteady wakes on heat transfer of blade tip and shroud. International Communications in Heat and Mass Transfer, 2018, 97: 125–135.
[33] Senel C.B., Maral H., Kavurmacioglu L.A., et al., An aerothermal study of the influence of squealer width and height near a HP turbine blade. International Journal of Heat & Mass Transfer, 2018, 120: 18–32. 
[34] Kwak, J.S., and Han, J.C., Heat transfer coefficient on a gas turbine blade tip and near tip regions. AIAA-2002-3012, 2002.DOI: 10.2514/6.2002-3012. 
[35] Timko L.P., Energy efficient engine high pressure turbine component test performance report, 1984. 
[36] Moore J., Moore J.G., Entropy production rates from viscous flow calculations: Part I A turbulent boundary layer flow. Proc. ASME 1983 International Gas Turbine Conference and Exhibit, 1983, V001T001A032. 
DOI: 10.1115/83-gt-70.
[37] Kwak J., Han J., Heat transfer coefficient on the squealer tip and near squealer tip regions of a gas turbine blade. Journal of Heat Transfer, 2003, 125(4): 669–677.
[38] Ye M., He K., Yan X., Influence of wear damages on aerodynamic and heat transfer performance in squealer tip gap. Applied Thermal Engineering, 2019, 159: 1–19.
[39] Ameri A.A., Steinthorsson E., Rigby D.L., Effect of squealer tip on rotor heat transfer and efficiency. Journal of Turbomachinery, 1998, 120(4): 753–759.
[40] Yang D.L., Feng Z.P., Tip leakage flow and heat transfer predictions for turbine blades. Proceedings of ASME Turbo Expo, 2007, ASME, Paper GT2007-27728.
[41] He K., Investigation of film cooling and heat transfer on a turbine blade squealer tip. Applied Thermal Engineering, 2017, 110: 630–647.
[42] Li F., Wang H., Liu Z., et al., Comparisons of blade tip phantom cooling effectiveness for two tip structures with three tip clearances. Applied Thermal Engineering, 2022, 202: 1–14.

基金

The authors gratefully acknowledge the financial supports for the project from the National Science and Technology Major Project of China (2017-III-0010-0036), China Postdoctoral Science Foundation (NO.2020TQ0147) and Natural Science Foundation of Jiangsu Province (NO. BK20200454).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
PDF(10023 KB)

49

Accesses

0

Citation

Detail

段落导航
相关文章

/