Numerical and Experimental Investigation on the Performance of Battery Thermal Management System Based on Micro Heat Pipe Array

YANG Lulu, XU Hongbo, ZHANG Hainan, CHEN Yiyu, LIU Ming, TIAN Changqing

热科学学报 ›› 2022, Vol. 31 ›› Issue (5) : 1531-1541.

PDF(4013 KB)
PDF(4013 KB)
热科学学报 ›› 2022, Vol. 31 ›› Issue (5) : 1531-1541. DOI: 10.1007/s11630-022-1604-y  CSTR: 32141.14.JTS-022-1604-y
传热传质

Numerical and Experimental Investigation on the Performance of Battery Thermal Management System Based on Micro Heat Pipe Array

  • YANG Lulu1,2, XU Hongbo1*, ZHANG Hainan1, CHEN Yiyu1,2, LIU Ming1,2, TIAN Changqing1,2
作者信息 +

Numerical and Experimental Investigation on the Performance of Battery Thermal Management System Based on Micro Heat Pipe Array

  • YANG Lulu1,2, XU Hongbo1*, ZHANG Hainan1, CHEN Yiyu1,2, LIU Ming1,2, TIAN Changqing1,2
Author information +
文章历史 +

摘要

动力电池热管理对于保证电动汽车和混合动力汽车的安全、长效运行是非常关键的。本文首先采用数值模拟方法对电池单体和模块的温度场进行分析,结果证实电池单体和模块的最高温度和最大温差均随电池充放电倍率的增加而升高。在室温为20℃的自然冷却条件下,当电池模块充放电倍率为2C时,其最高温度可以达到61.1℃。本文采用了一种基于平板微热管阵列的电池热管理系统,并通过实验对比了不同冷却条件的电池模块的冷却效果,包括自然冷却、平板微热管阵列和风扇辅助的平板微热管阵列冷却。采用风扇辅助的平板微热管阵列冷却方式下,电池模块在2C倍率下的最高温度为43.4℃,远低于仅采用自然冷却下的温度水平。同时采用平板微热管阵列的冷却方案也明显降低了电池温差。实验结果证明了基于平板微热管阵列的电池热管理系统在保证电池工作温度范围和温度均匀性方面的可靠性和优越性。

Abstract

Battery thermal management is very crucial for the safe and long-term operation of electric vehicles or hybrid electric vehicles. In this study, numerical simulation method is adopted to simulate the temperature field of Li-ion battery cell and module. It is proved that the maximum temperature and maximum temperature difference of battery cell and module increase with the increase of charge/discharge rate (C-rate) of the battery. For battery module, it can reach a maximum temperature of 61.1°C at a C-rate of 2 under natural convection condition with the ambient temperature of 20.0°C. A battery thermal management system based on micro heat pipe array (BTMS-MHPA) is deeply investigated. Experiments are conducted to compare the cooling effect on the battery module with different cooling methods, which include natural cooling, only MHPA, MHPA with fan. The maximum temperature of battery module which is cooled by MHPA with a fan is 43.4°C at a C-rate of 2, which is lower than that in the condition of natural cooling. Meanwhile, the maximum temperature difference was also greatly reduced by the application of MHPA cooling. The experimental results confirm that the feasibility and superiority of the BTMS-MHPA for guaranteeing the working temperature range and temperature uniformity of the battery.

关键词

battery thermal management / micro heat pipe array / Li-ion battery / temperature field

Key words

battery thermal management / micro heat pipe array / Li-ion battery / temperature field

引用本文

导出引用
YANG Lulu, XU Hongbo, ZHANG Hainan, CHEN Yiyu, LIU Ming, TIAN Changqing. Numerical and Experimental Investigation on the Performance of Battery Thermal Management System Based on Micro Heat Pipe Array[J]. 热科学学报, 2022, 31(5): 1531-1541 https://doi.org/10.1007/s11630-022-1604-y
YANG Lulu, XU Hongbo, ZHANG Hainan, CHEN Yiyu, LIU Ming, TIAN Changqing. Numerical and Experimental Investigation on the Performance of Battery Thermal Management System Based on Micro Heat Pipe Array[J]. Journal of Thermal Science, 2022, 31(5): 1531-1541 https://doi.org/10.1007/s11630-022-1604-y

参考文献

[1] An Z., Jia L., Ding Y., et al., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017, 26: 391–412.
[2] Chen Y., Zhou H., Dong J., et al., Experimental investigation on refrigeration performance of a CO2 system with intermediate cooling for automobiles. Appllied Thermal Engineering, 2020, 174: 115267.
[3] Wei L., Jia L., An Z., et al., Experimental study on thermal management of cylindrical li-ion battery with flexible microchannel plates. Journal of Thermal Science, 2020, 29: 1001–1009.
[4] Shen J., Wang Y., Yu G., et al., Thermal management of prismatic lithium-ion battery with minichannel cold plate. Journal of Energy Engineering, 2020, 146(1): 04019033.
[5] Rao Z., Wang S., Wu M., et al., Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Conversion and Management, 2013, 65: 92–97.
[6] Bandhauer T., Garimella S., Fuller T., A critical review of thermal issues in lithium-ion batteries. Journal of the Electrochemical Society, 2011, 158(3): R1–R25.
[7] Pesaran A., Battery thermal models for hybrid vehicle simulations. Journal of Power Sources, 2002, 110(2): 377–382.
[8] Thanh-Ha T., Harmand S., Sahut B., Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery. Journal of Power Sources, 2014, 265: 262–272.
[9] Rao Z., Wang S., A review of power battery thermal energy management. Renewable & Sustainable Energy Reviews, 2011, 15(9): 4554–4571.
[10] Wang Q., Jiang B., Li B., et al., A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renewable & Sustainable Energy Reviews, 2016, 64: 106–128.
[11] Kim J., Oh J., Lee H., Review on battery thermal management system for electric vehicles. Appllied Thermal Engineering, 2019, 149: 192–212.
[12] Chen Y., Evans J., Heat-transfer phenomena in lithium polymer electrolyte batteries for electric vehicle application. Journal of the Electrochemical Society, 1993, 140(7): 1833–1838.
[13] Wu M., Liu K., Wang Y., et al., Heat dissipation design for lithium-ion batteries. Journal of Power Sources, 2002, 109(1): 160–166.
[14] Liang J., Gan Y., Li Y., et al., Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures. Energy, 2019, 189: 116233.
[15] Wang S., Lu L., Ren D., et al., Experimental investigation on the feasibility of heat pipe-based thermal management system to prevent thermal runaway propagation. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(3): 031006.
[16] Khateeb S., Amiruddin S., Farid M., et al., Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation. Journal of Power Sources, 2005, 142(1–2): 345–353.
[17] Wang Q., Rao Z., Huo Y., et al., Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system. International Journal of Thermal Science, 2016, 102: 9–16.
[18] Zou H., Wang W., Zhang G., et al., Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle. Energy Conversion and Management, 2016, 118: 88–95.
[19] Liang J., Gan Y., Li Y., Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Conversion and Management, 2018, 155: 1–9.
[20] Yuan W., Yan Z., Tan Z., et al., Heat-pipe-based thermal management and temperature characteristics of Li-ion batteries. Canadian Journal of Chemical Engineering, 2016, 94(10): 1901–1908.
[21] Liu F ., Lan F., Chen J., Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling. Journal of Power Sources, 2016, 321: 57–70.
[22] Zhao Y., Zhang K., Diao Y., Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system, US Patent No: 20110203777A1.
[23] Dan D., Yao C., Zhang Y., et al., Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Appllied Thermal Engineering, 2019, 162: 114183.
[24] Mo X., Hu X., Tang J., et al., A comprehensive investigation on thermal management of large-capacity pouch cell using micro heat pipe array. International Journal of Energy Research, 2019, 43(13): 7444–7458.
[25] Rao Z., Zhang X., Investigation on thermal management performance of wedge-shaped microchannels for rectangular Li-ion batteries. International Journal of Energy Research, 2019, 43(8): 3876–3890.
[26] Bernardi D., Pawlikowski E., Newman J., A general energy-balance for battery systems. Journal of the Electrochemical Society, 1985, 132(1): 5–12.
[27] Pesaran A., Burch S., Keyser M., An approach for designing thermal management systems for electric and hybrid vehicle battery packs. Proceeding of the 4th Vehicle Thermal Management Systems Conference and Exhibition. London: OSTI. 1999: 1–16.
[28] Wang G., Quan Z., Zhao Y., et al., Performance of a flat-plate micro heat pipe at different filling ratios and working fluids. Appllied Thermal Engineering, 2019, 146: 459–468.
[29] Moffat R., Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1988, 1(1): 3–17.

基金

The authors gratefully acknowledge the financial support from National Key R&D Program of China (2018YFE0111200).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
PDF(4013 KB)

51

Accesses

0

Citation

Detail

段落导航
相关文章

/