Temperature Dependence of Laminar Burning Velocity in Ammonia/Dimethyl Ether-air Premixed Flames

CAI Tao, ZHAO Dan

热科学学报 ›› 2022, Vol. 31 ›› Issue (1) : 189-197.

PDF(1718 KB)
PDF(1718 KB)
热科学学报 ›› 2022, Vol. 31 ›› Issue (1) : 189-197. DOI: 10.1007/s11630-022-1549-1  CSTR: 32141.14.JTS-022-1549-1
燃烧和反应

Temperature Dependence of Laminar Burning Velocity in Ammonia/Dimethyl Ether-air Premixed Flames

  • CAI Tao, ZHAO Dan*
作者信息 +

Temperature Dependence of Laminar Burning Velocity in Ammonia/Dimethyl Ether-air Premixed Flames

  • CAI Tao, ZHAO Dan*
Author information +
文章历史 +

摘要

氨燃料燃烧因其低碳排放在汽车发动机、船舶发动机和电力系统获得了广泛的研究兴趣。但是,这种可再生燃料具有较低层流火焰速度,限制了其实际应用。利用一维自由传播火焰计算方法,本文数值地探索了进气温度对氨气/二甲醚/空气二元混合物层流火焰速度的影响,并阐明了火焰传播特性强化的作用机制。为此,通过对比数值预测结果与实验数据,对化学反应机理首先进行了验证。结果表明,提高进气温度对于改善二元混合物层流火焰速度有积极影响。该方法的实施提高了绝热火焰温度,从而促进了整个化学反应速率的进行。同时,二元混合物的热扩散率也得到了显著提升。此外,动力学和敏感性分析表明,进气温度对化学反应路径的影响很小,导致主导链分支比终止反应相对重要性的变化忽略不计。本工作证实,与进气温度变化相关的火焰速度强化主要是热和扩散效应的协同结果,而不是化学效应。

Abstract

The combustion of ammonia (NH3) has attracted wide interest in fuel vehicle engines, marine engines, and power generators to mitigate carbon dioxide emissions. Unfortunately, the relatively low laminar flame speed presents a technical barrier for this renewable fuel to be used in practice. This work is concerned with numerical examining the effects of elevating inlet temperature on the laminar burning velocity of NH3/air flames with various contents of dimethyl ether (DME) using 1D freely propagating flame calculations, and to shed light on the flame enhancement mechanism. For this, the mechanism is first validated by comparing the numerical predictions with experimental data. Results show that increasing the inlet temperature has a positive effect on the laminar burning velocity of pure NH3/DME/air flames. It is revealed that elevating inlet temperature contributes to a higher adiabatic flame temperature, which is beneficial to the overall chemical reaction rate. Furthermore, the thermal diffusivity of the binary mixture is observed to increase substantially as well. Further kinetic and sensitivities analyses reveal that the inlet temperature has a minimal effect on the reaction pathway, leading to the relative importance of the dominant chain branching over terminating reaction steps to be varied negligibly. The present work confirms that the flame speed enhancement with increasing inlet temperature is primarily the synergetic result of the thermal and diffusion effects, rather than the chemical effect.

关键词

ammonia / dimethyl ether / laminar burning velocity / temperature dependence / kinetic analyses

Key words

ammonia / dimethyl ether / laminar burning velocity / temperature dependence / kinetic analyses

引用本文

导出引用
CAI Tao, ZHAO Dan. Temperature Dependence of Laminar Burning Velocity in Ammonia/Dimethyl Ether-air Premixed Flames[J]. 热科学学报, 2022, 31(1): 189-197 https://doi.org/10.1007/s11630-022-1549-1
CAI Tao, ZHAO Dan. Temperature Dependence of Laminar Burning Velocity in Ammonia/Dimethyl Ether-air Premixed Flames[J]. Journal of Thermal Science, 2022, 31(1): 189-197 https://doi.org/10.1007/s11630-022-1549-1

参考文献

[1] Zhang Z., Jiaqiang E., Deng Y., Pham M., Zuo W., Peng Q., Yin Z., Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled marine diesel engine. Energy Conversion and Management, 2018, 159: 244–253.
[2] Tan D., Chen Z., Li J., Luo J., Yang D., Cui S., Zhang Z., Effects of swirl and boiling heat transfer on the performance enhancement and emission reduction for a medium diesel engine fueled with biodiesel. Processes, 2021, 9(3): 568.
[3] Zhang Z., Ye J., Tan D., Feng Z., Luo J., Tan Y., Huang Y., The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel, 2021, 290: 120039.
[4] Service R., Ammonia—a renewable fuel made from sun, air, and water—could power the globe without carbon. Science, 2018, aau7489.
[5] Cai T., Zhao D., Sun Y., Ni S., Li W., Guan D., Wang B., Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate. Renewable and Sustainable Energy Reviews, 2021, 145: 111150.
[6] MacFarlane D.R., Cherepanov P.V., Choi J., Suryanto B.H., Hodgetts R.Y., Bakker J.M., Vallana F.M.F., Simonov A.N., A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186–1205.
[7] Valera-Medina A., Xiao H., Owen-Jones M., David W.I., Bowen P., Ammonia for power. Progress in Energy and Combustion Science, 2018, 69: 63–102.
[8] Kobayashi H., Hayakawa A., Somarathne K.K.A., Okafor E.C., Science and technology of ammonia combustion. Proceedings of the Combustion Institute, 2019, 37(1): 109–133.
[9] Cai T., Becker S.M., Cao F., Wang B., Tang A., Fu J., Han L., Sun Y., Zhao D., NOx emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system. Chemical Engineering Journal, 2021, 417: 128033.
[10] Shrestha K.P., Lhuillier C., Barbosa A.A., Brequigny P., Contino F., Mounaïm-Rousselle C., Seidel L., Mauss F., An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proceedings of the Combustion Institute, 2021, 38(2): 2163–2174.
[11] Goldmann A., Dinkelacker F., Approximation of laminar flame characteristics on premixed ammonia/hydrogen/ nitrogen/air mixtures at elevated temperatures and pressures. Fuel, 2018, 224: 366–378.
[12] Mei B., Zhang X., Ma S., Cui M., Guo H., Cao Z., Li Y., Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combustion and Flame, 2019, 210: 236–246.
[13] Li J., Huang H., Kobayashi N., He Z., Osaka Y., Zeng T., Numerical study on effect of oxygen content in combustion air on ammonia combustion. Energy, 2015, 93: 2053–2068.
[14] Han X., Wang Z., He Y., Liu Y., Zhu Y., Konnov A.A., The temperature dependence of the laminar burning velocity and superadiabatic flame temperature phenomenon for NH3/air flames. Combustion and Flame, 2020, 217: 314–320.
[15] Duynslaegher C., Jeanmart H., Vandooren J., Ammonia combustion at elevated pressure and temperature conditions. Fuel, 2010, 89: 3540–3545.
[16] Ciccarelli G., Jackson D., Verreault J., Flammability limits of NH3-H2-N2-air mixtures at elevated initial temperatures. Combustion and Flame, 2006; 144: 53–63.
[17] Kondo S., Takizawa K., Takahashi A., Tokuhashi K., On the temperature dependence of flammability limits of gases. Journal of Hazardous Materials, 2011, 187(1–3): 585–590.
[18] Shioyoke A., Hayashi J., Murai R., Nakatsuka N., Akamatsu F., Numerical investigation on effects of nonequilibrium plasma on laminar burning velocity of ammonia flame. Energy & Fuels, 2018, 32(3): 3824–3832.
[19] Zhang Z., Jiaqiang E., Chen J., Zhu H., Zhao X., Han D., Zuo W., Peng Q., Gong J., Yin Z., Effects of low-level water addition on spray, combustion and emission characteristics of a medium speed diesel engine fueled with biodiesel fuel. Fuel, 2019, 239: 245–262.
[20] Zhang Z., Jiaqiang E., Chen J., Zhao X., Zhang B., Deng Y., Peng Q., Yin Z., Effects of boiling heat transfer on the performance enhancement of a medium speed diesel engine fueled with diesel and rapeseed methyl ester. Applied Thermal Engineering, 2020, 169: 114984.
[21] Cai T., Zhao D., Effects of fuel composition and wall thermal conductivity on thermal and NOx emission performances of an ammonia/hydrogen-oxygen micro-power system. Fuel Processing Technology, 2020, 209: 106527.
[22] Shrestha K.P., Lhuillier C., Barbosa A.A., Brequigny P., Contino F., Mounaïm-Rousselle C., Seidel L., Mauss F., An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proceedings of the Combustion Institute, 2021, 38(2): 2163–2174.
[23] Han X., Wang Z., Costa M., Sun Z., He Y., Cen K., Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combustion and Flame, 2019, 206: 214–226.
[24] Li J., Huang H., Kobayashi N., Wang C., Yuan H., Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition. Energy, 2017, 126: 796–809.
[25] Xiao H., Valera-Medina A., Bowen P.J., Study on premixed combustion characteristics of co-firing ammonia/methane fuels. Energy, 2017, 140: 125–135.
[26] Wang Z., Han X., He Y., Zhu R., Zhu Y., Zhou Z., Cen K., Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames. Combustion and Flame, 2021, 229: 111392.
[27] Issayev G., Giri B.R., Elbaz A.M., Shrestha K.P., Mauss F., Roberts W.L., Farooq A., Combustion behavior of ammonia blended with diethyl ether. Proceedings of the Combustion Institute, 2021, 38(1): 499–506.
[28] “Chemical-Kinetic Mechanisms for Combustion Applications”, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (http://combustion.ucsd.edu).
[29] Law C.K., Combustion physics, Cambridge university press, 2010.
[30] Egolfopoulos F., Law C., Chain mechanisms in the overall reaction orders in laminar flame propagation. Combustion and Flame, 1990, 80: 7–16.
[31] Bongers H., De Goey L., The effect of simplified transport modeling on the burning velocity of laminar premixed flames. Combustion Science and Technology, 2003, 175(10): 1915–1928.
[32] Matalon M., Flame dynamics. Proceedings of the Combustion Institute, 2009, 32(1): 57–82.
[33] Wang Y.L., Holley A.T., Ji C., Egolfopoulos F.N., Tsotsis T.T., Curran H.J., Propagation and extinction of premixed dimethyl-ether/air flames. Proceedings of the Combustion Institute, 2009, 32(1): 1035–1042.
[34] Ronney P.D., Effect of chemistry and transport properties on near-limit flames at microgravity. Combustion Science and Technology, 1988, 59(1–3): 123–141.
[35] Hayakawa A., Goto T., Mimoto R., Arakawa Y., Kudo T., Kobayashi H., Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel, 2015, 159: 98–106.
[36] Daly C.A., Simmie J.M., Würmel J., DjebaÏli N., Paillard C., Burning velocities of dimethyl ether and air. Combustion and Flame, 2001, 125: 1329–1340.
[37] Zhao Z., Kazakov A., Dryer F., Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry. Combustion and Flame, 2004, 139: 52–60.
[38] Mohammad A., Juhany K.A., Laminar burning velocity and flame structure of DME/methane+air mixtures at elevated temperatures. Fuel, 2019, 245: 105–114.
[39] Tang A., Cai T., Deng J., Xu Y., Pan J., Experimental investigation on combustion characteristics of premixed propane/air in a micro-planar heat recirculation combustor. Energy Conversion and Management, 2017, 152: 65–71.

基金

We gratefully acknowledge the financial support provided by the University of Canterbury, New Zealand (grant no. CPS20-03-002, grant no. 452DISDZ) and National Research Foundation Singapore (grant no. NRF2016 NRF-NSFC001-102). Tao Cai would like to thank College of Engineering, University of Canterbury for providing PhD studentship.

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
PDF(1718 KB)

43

Accesses

0

Citation

Detail

段落导航
相关文章

/