Assessment of the Turbulence Characteristics of Shaped Film Cooling Hole with Scale Resolving Simulation

WANG Qingsong, SU Xinrong, YUAN Xin

热科学学报 ›› 2022, Vol. 31 ›› Issue (1) : 47-61.

PDF(19744 KB)
PDF(19744 KB)
热科学学报 ›› 2022, Vol. 31 ›› Issue (1) : 47-61. DOI: 10.1007/s11630-022-1545-5  CSTR: 32141.14.JTS-022-1545-5
气动

Assessment of the Turbulence Characteristics of Shaped Film Cooling Hole with Scale Resolving Simulation

  • WANG Qingsong, SU Xinrong*, YUAN Xin
作者信息 +

Assessment of the Turbulence Characteristics of Shaped Film Cooling Hole with Scale Resolving Simulation

  • WANG Qingsong, SU Xinrong*, YUAN Xin
Author information +
文章历史 +

摘要

为了保护燃气轮机的高温区域,气膜冷却方法被广泛使用,成型孔近壁区域的湍流特性十分复杂。在这项研究中,分别用LES和RANS研究平板的气膜冷却,将其时间平均值与文献中实验数据进行比较,结果表明,LES结果与实验具有较高的一致性,而RANS结果则显示出较大的偏差。由于采用涡粘性模型,RANS方法粗略地处理了边界层的模拟,从而导致较大的偏差。通过使用LES数据评估了涡粘性假设和温度梯度扩散假设,结果表明Realizable k-ε模型预测涡流粘度不足。此外,Realizable k-ε模型在空间中采用定值普朗特数不合理。此外,利用增量本征正交分解(iPOD)分析了孔内流动的湍流特性,湍流具有很强的各向异性,孔内气流的剪切诱导产生一些对流结构向下游传输。

Abstract

The turbulence characteristics of the shaped hole film cooling are very complex. In this study, Large Eddy Simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) are used to study the film cooling of the shaped hole. The time-averaged results are compared with the experimental data in the literature. Because of the eddy-viscosity model, the RANS method roughly deals with the simulation of boundary layer, which leads to a large deviation. The RANS results are compared with the LES results to identify the weaknesses of the Realizable k-ε model in predicting the turbulence characteristics of the shaped hole film cooling. The eddy viscosity hypothesis and the temperature gradient diffusion hypothesis are evaluated using LES data. Furthermore, the turbulence characteristics of the in-hole flow are analysed with the help of the incremental Proper Orthogonal Decomposition (iPOD). The turbulence presents strong anisotropy and some convection structures are induced from the shear zone. 

关键词

shaped film cooling / turbulence characteristics / les / rans / iPOD

Key words

shaped film cooling / turbulence characteristics / les / rans / iPOD

引用本文

导出引用
WANG Qingsong, SU Xinrong, YUAN Xin. Assessment of the Turbulence Characteristics of Shaped Film Cooling Hole with Scale Resolving Simulation[J]. 热科学学报, 2022, 31(1): 47-61 https://doi.org/10.1007/s11630-022-1545-5
WANG Qingsong, SU Xinrong, YUAN Xin. Assessment of the Turbulence Characteristics of Shaped Film Cooling Hole with Scale Resolving Simulation[J]. Journal of Thermal Science, 2022, 31(1): 47-61 https://doi.org/10.1007/s11630-022-1545-5

参考文献

[1] Bogard D.G., Thole K.A., Gas turbine film cooling. Journal of Propulsion and Power, 2006, 22(2): 249–   270.
[2] Goktepeli I., Atmaca U., Cakan A., Investigation of heat transfer augmentation between the ribbed plates via taguchi approach and computational fluid dynamics. Journal of Thermal Science, 2020, 29: 647–666.
[3] Galeazzo F., Donnert G., Habisreuther P., Zarzalis N., Valdes R.J., Krebs W., Measurement and simulation of turbulent mixing in a jet in crossflow. ASME. Journal of Engineering for Gas Turbines and Power, 2011, 133(6): 061504. 
[4] Laroche E., Fenot M., Dorignac E., Vuillerme J.J., Brizzi, L.E., Larroya J.C., A combined experimental and numerical investigation of the flow and heat transfer inside a turbine vane cooled by jet impingement. Journal of Turbomachinery, 2018, 140(3): 031002.
[5] Foroutan H., Yavuzkurt S., Numerical simulations of the near-field region of film cooling jets under high free stream turbulence: Application of rans and hybrid urans/large eddy simulation models. Journal of Heat Transfer, 2015, 137(1): 011701.
[6] Bergeles G., Gosman A.D., Launder B.E., The turbulent jet in a cross stream at low injection rates: a three-dimensional numerical treatment. Numerical Heat Transfer, Part B: Fundamentals, 1978, 1(2): 217–242.
[7] Lakehal D., Near-wall modeling of turbulent convective heat transport in film cooling of turbine blades with the aid of direct numerical simulation data. Journal of Turbomachinery, 2002, 124(3): 485–498.
[8] Bianchini C., Andrei L., Andreini A., Facchini B., Numerical benchmark of nonconventional RANS turbulence models for film and effusion cooling. Journal of turbomachinery, 2013, 135(4): 041026.
[9] Ling J., Ruiz A., Lacaze G., Oefelein J., Uncertainty analysis and data-driven model advances for a jet-in-crossflow. Journal of Turbomachinery, 2017, 139(2): 021008.
[10] Sarkar S., Babu H., Large eddy simulation on the interactions of wake and film-cooling near a leading edge. Journal of Turbomachinery, 2014, 137(1): 011005.
[11] Stratton Z.T., Shih T.I.P., Identifying weaknesses in eddy-viscosity models for predicting film cooling via large-eddy simulations. Journal of Propulsion and Power, 2019, 35(3): 583–594.
[12] Schroeder R.P., Thole K.A., Adiabatic effectiveness measurements for a baseline shaped film cooling hole. Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 5B: Heat Transfer, 2014. V05BT13A036. ASME. 
DOI: 10.1115/GT2014-25992.
[13] Wang Q.S., Su X.R., Yuan X., Large-eddy simulation of shaped hole film cooling with the influence of cross flow. International Journal of Turbo & Jet-Engines. 2020, pp. 000010151520200012. DOI: 10.1515/tjj-2020-0012.

基金

This study is supported by the National Natural Science Foundation of China (Project Grant No. 51876098) and National Science and Technology Major Project (J2019-III-0007-0050). This research is also sponsored by the Open Fund from Science and Technology on Thermal Energy and Power Laboratory (TPL2018B05).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
PDF(19744 KB)

74

Accesses

0

Citation

Detail

段落导航
相关文章

/