Numerical Investigation on Dropwise Condensation on Rough Structures with and without Non-Condensable Gas

LI Mingjie, ZHOU Wenjing, WEI Jinjia, TAO Wenquan

热科学学报 ›› 2022, Vol. 31 ›› Issue (2) : 308-317.

PDF(3320 KB)
PDF(3320 KB)
热科学学报 ›› 2022, Vol. 31 ›› Issue (2) : 308-317. DOI: 10.1007/s11630-022-1519-7  CSTR: 32141.14.JTS-022-1519-7
传热传质

Numerical Investigation on Dropwise Condensation on Rough Structures with and without Non-Condensable Gas

作者信息 +

Numerical Investigation on Dropwise Condensation on Rough Structures with and without Non-Condensable Gas

Author information +
文章历史 +

摘要

粗糙结构的几何尺寸以及蒸汽混合物中不凝气体对液滴的成核位置和润湿状态有很大影响,进而影响凝结换热的热流。本文采用多组分格子玻尔兹曼方法和热相变模型研究粗糙表面的珠状冷凝现象。首先研究了方柱高度、宽度和柱间距等几何尺寸的影响。并在此基础上,研究了不凝气对粗糙表面冷凝液滴接触角的影响。结果表明:粗糙表面在较大的柱间距、宽度和较小的高度处,局部热流通量和湿润面积较大,而成核等待时间较短;随着方柱高度的增加和柱间距的减小,成核位置从槽底向槽顶上升,同时所形成的液滴接触角较大,且更容易保持非润湿的Cassie状态。当存在不凝气体时粗糙表面的疏水性也显著提高。

Abstract

The geometrical dimensions of the rough structures as well as the non-condensable gases in the vapor mixture can have the great effect on the nucleation position and the wetting state of the droplet, which further influence the condensation heat flux. In this paper, the multispecies multiphase lattice Boltzmann method together with a thermal phase change model is used to investigate the dropwise condensation on a rough surface enhanced with pillars. The effect of the geometric dimensions including pillar height H, pillar width W and pillar space S is investigated. Then the effect of non-condensable gases on the contact angle of a droplet on textured surface is studied. The results show that the local heat flux and the wetting area are higher while the waiting time is shorter at larger S, W and smaller H on the rough surface. The nucleation position rises from the bottom of grooves to the top with the increase of pillar height and the decrease of pillar space. The contact angle is larger and it is easier to maintain the Cassie state for droplet. When there exists non-condensable gas, the non-condensable gas obviously enhances the hydrophobicity of the rough surfaces compared with pure vapor.

关键词

condensation / wetting state / lattice Boltzmann method / numerical simulation

Key words

condensation / wetting state / lattice Boltzmann method / numerical simulation

引用本文

导出引用
LI Mingjie , ZHOU Wenjing , WEI Jinjia , TAO Wenquan. Numerical Investigation on Dropwise Condensation on Rough Structures with and without Non-Condensable Gas[J]. 热科学学报, 2022, 31(2): 308-317 https://doi.org/10.1007/s11630-022-1519-7
LI Mingjie , ZHOU Wenjing , WEI Jinjia , TAO Wenquan. Numerical Investigation on Dropwise Condensation on Rough Structures with and without Non-Condensable Gas[J]. Journal of Thermal Science, 2022, 31(2): 308-317 https://doi.org/10.1007/s11630-022-1519-7

参考文献

[1] Shunsuke N., Bharat B., Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances, 2013, 3(3): 671–690.
[2] Hou Y.M., Yu M., Chen X.M., et al., Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano, 2015, 9(1): 71–81.
[3] Edalatpour M., Liu L., Jacobi A.M., et al., Managing water on heat transfer surfaces: A critical review of techniques to modify surface wettability for applications with condensation or evaporation. Applied Energy, 2018, 222: 967–992.
[4] Ji X.B., Zhou D.D., Dai C., et al., Dropwise condensation heat transfer on superhydrophilic-hydrophobic network hybrid surface. International Journal of Heat and Mass Transfer, 2019, 132: 52–67.
[5] Xu H.J., Qu Z.G., Du Y.P., et al., Flow condensation in tube filled with annular metal foam. Journal of Chemical Industry and Engineering (China), 2011, 62(5): 1246– 1251. (in Chinese)
[6] Wen R.F., Xu S.S., Ma X.H., et al., Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer. Joule, 2018, 2(2): 269–279.
[7] Peng Q., Jia L., Dang C., et al., Analysis of droplet dynamic behavior and condensation heat transfer characteristics on rectangular microgrooved surface with CuO nanostructures. International Journal of Heat and Mass Transfer, 2019, 130: 1096–1107.
[8] Sharma C.S., Stamatopoulos C., Suter R., et al., Rationally 3D-textured copper surfaces for laplace pressure imbalance-induced enhancement in dropwise condensation. ACS Applied Materials & Interfaces, 2018, 10(34): 29127–29135.
[9] Huang B., Zhang X., Yao Z., Condensation on solid surfaces with amphiphilic micro-nanostructures by lattice Boltzmann simulation. Chemical Physics, 2018, 513: 258–265.
[10] Wang R., Zhu J., Meng K.X., et al., Bio-inspired superhydrophobic closely packed aligned nanoneedle architectures for enhancing condensation heat transfer. Advanced Functional Materials, 2018, 28(49): 1800634.
[11] Zhang Q.Y., Sun D.K., Zhang Y.F., et al., Lattice Boltzmann modeling of droplet condensation on superhydrophobic nanoarrays. Langmuir, 2014.
[12] Zhang Q.Y., Sun D.K., Zhang Y.F., et al., Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method. Chinese Physics B, 2016, 25(6): 066401.
[13] Vasyliv Y., Lee D., Tower T., et al., Modeling condensation on structured surfaces using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2019, 136: 196–212.
[14] Li M.J., Huber C., Tao W.Q., et al., Study on nucleation position and wetting state for dropwise condensation on rough structures with different wettability using multiphase lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2019, 131: 96–100.
[15] Li M.J., Qu J.G., Ocłon P., et al., 3D numerical simulation of condensation and condensate behaviorson textured structures using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2020, 160: 120198.
[16] Lopes D.M., Mombach J.C.M., Two-dimensional wetting transition modeling with the potts model. Brazilian Journal of Physics, 2017, 47(6): 672–677.
[17] Li Y.Z., Ren W.Q., Numerical study of vapor condensation on patterned hydrophobic surfaces using the string method. Langmuir, 2014, 30(31): 9567–9576.
[18] Zhao J.Y., Chen S., Liu Y., Spontaneous wetting transition of droplet coalescence on immersed micropillared surfaces. Applied Mathematical Modelling, 2018, 63: 390–404.
[19] Wen R.F., Lan Z., Peng B.L., et al., Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces: coordination of surface properties and condensing conditions. ACS Applied Materials & Interfaces, 2017, 9(15): 13770–13777.
[20] Chen L., Kang Q.J., Mu Y.T., et al., A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer, 2014, 76: 210–236.
[21] Zhang B., Wang J.J., Zhang X.R., Effects of the hierarchical structure of rough solid surfaces on the wetting of microdroplets. Langmuir, 2013, 29(22): 6652– 6658.
[22] Fu X.W., Yao Z.H., Hao P.F., Numerical simulation of condensation on structured surfaces. Langmuir, 2014, 30(46): 14048–14055.
[23] Zhang L.Z., Yuan W.Z., A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures. Applied Surface Science, 2018, 436: 172–182.
[24] Haghani-Hassan-Abadi R., Rahimian M.H., A lattice Boltzmann method for simulation of condensation on liquid-impregnated surfaces. International Communications in Heat and Mass Transfer, 2019, 103: 7–16.
[25] Peng B.L., Lan Z., Xu W., et al., A numerical study of droplet motion/departure on condensation of mixture vapor using lattice Boltzmann method. International Journal of Heat and Fluid Flow, 2017, 68: 53–61.
[26] Li M.J., Huber C., Mu Y.T., et al., Lattice Boltzmann simulation of condensation in the presence of noncondensable gas. International Journal of Heat & Mass Transfer, 2017, 109: 1004–1013.
[27] Li M.J., Wei J.J., Tao W.Q., Numerical simulation of dropwise condensation on rough structures in the presence of non-condensable gas using LBM. Numerical Heat Transfer, Part A: Applications, 2021, 79: 450–462.
[28] Mu Y.T., Chen L., He Y.L., et al., Nucleate boiling performance evaluation of cavities at mesoscale level. International Journal of Heat and Mass Transfer, 2017, 106: 708–719.
[29] Li Q., Kang Q., Francois M., et al., Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability. International Journal of Heat and Mass Transfer, 2015, 85: 787–796.
[30] Fang W.Z., Chen L., Kang Q.J., et al., Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio. International journal of thermal sciences, 2017, 114: 172–183.
[31] Yuan P., Schaefer L., Equations of state in a lattice Boltzmann model. Physics of Fluids, 2006, 18: 042101.
[32] Zou Q., He X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 1997, 9: 1591–1598.

基金

The research is supported by the National Natural Science Foundation of China (grant number: 51906190), China Postdoctoral Science Foundation (2019M663702), Fundamental Research Funds for the Central Universities (xjh012019015) and innovation team of Shaanxi province (2019TD-039).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
PDF(3320 KB)

59

Accesses

0

Citation

Detail

段落导航
相关文章

/