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Abstract: Stall in compressors can cause performance degradation and even lead to disasters. These unacceptable 

consequences can be avoided by timely monitoring stall inception and taking effective measures. This paper 

focused on the rotating stall warning in a low-speed axial contra-rotating compressor. Firstly, the stall disturbance 

characteristics under different speed configurations were analyzed. The results showed that as the speed ratio (RR) 

increased, the stall disturbance propagation speed based on the rear rotor speed gradually decreased. Subsequently, 

the standard deviation (SD) method, the cross-correlation (CC) method, and the discrete wavelet transform (DWT) 

method were employed to obtain the stall initiation moments of three different speed configurations. It was found 

that the SD and CC methods did not achieve significant stall warning results in all three speed configurations. 

Besides, the stall initiation moment obtained by the DWT method at RR=1.125 was one period after the stall had 

fully developed, which was unacceptable. Therefore, a stall warning method was developed in the present work 

based on the long short-term memory (LSTM) regression model. By applying the LSTM model, the predicted 

stall initiation moments of three speed configurations were at the 557th, 518th, and 333rd revolution, which were 

44, 2, and 74 revolutions ahead of stall onset moments, respectively. Furthermore, in scenarios where a minor 

disturbance preceded the stall, the stall warning effect of the LSTM was greatly improved in comparison with the 

aforementioned three methods. In contrast, when the pressure fluctuation before the stall was relatively small, the 

differences between the stall initiation moments predicted by these four methods were not significant. 

Keywords: contra-rotating compressor; stall disturbance; stall initiation moment; long short-term memory 

(LSTM); stall warning 

1. Introduction 

Stall is a common flow instability phenomenon in 
axial flow compressors and is considered one of the most 
serious aerodynamic disasters in turbomachinery, 
alongside surge [1]. The earliest description of the stall 
was in Stenning’s account [2], where Frank Whittle 
discovered that it occurred in the compressor when the 

flow rate decreased during the experiment. Since then, 
scholars from various nations have conducted extensive 
and continuous research on this topic. In 1955, Emmons 
[3] proposed a two-dimensional linear stall model based 
on the small perturbation theory. This model was still 
considered a classical explanation for the stall 
phenomenon. With continuous research on the stall 
mechanism, Moore and Greitzer [4, 5] developed the  
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Nomenclature   

A airflow circulation area R rotor 

n rotor speed r revolution 

P pressure RMSE root mean square error 

P* normalized pressure RNN Recurrent Neural Network 

U blade velocity RR speed ratio 

V absolute airflow velocity SD Standard Deviation 

μ mathematical expectation Subscripts 

ρ density 1 front 

σ standard deviation 2 rear 

ϕ flow coefficient atm atmosphere 

Ψ pressure rise coefficient ave average 

Abbreviations c current 

BPF blade passing frequency e outlet 

CC cross-correlation i inlet 

DWT Discrete Wavelet Transform m mid-span 

IGV inlet guide vane pred predicted value 

LSTM Long Short-Term Memory s stall disturbance 

PA prediction accuracy ts total to static 

 
M-G model. This model can theoretically predict the 
existence of large-scale rotating disturbances (modal) in 
compressors before stall. Subsequently, McDougall et al. 
[6] used spatial Fourier analysis to process the hot-wire 
signal and detected modal stall inception in a single-stage 
axial compressor. In addition, Day et al. [7] identified 
another type of stall inception (spike) in the compressor 
experimentally. This type of stall inception usually 
occurs in the local channel at the top of the rotor blade 
and develops faster than modal waves. Even today, these 
two types of stall inceptions are still recognized as the 
typical forms by the academic community. Furthermore, 
Day et al. [8] discovered a “fixed position” type of stall 
inception in three multi-stage high-speed axial 
compressors. This kind of pre-stall disturbance does not 
rotate in the circumferential direction and is monitored 
only 3–4 revolutions before the stall, and then rapidly 
develops into mature stall cells. In 1998, Freeman et al. 
[9] discovered that stall inception was a specific 
disturbance that occurred at 90% of the design speed in 
an eight-stage high-speed axial flow compressor. This 
disturbance was fixed at a certain circumferential 
position and occupied 1/3 of the circumferential range 
when it first appeared. It did not start to rotate until after 
3–4 revolutions. In 2014, Li et al. [10] identified “partial 
surge” stall inception in a transonic axial flow 
compressor. This type of stall was located at the rotor hub 
region and was axisymmetric. The frequency of the 
pre-stall disturbance was constant during stall 
development and was detected as early as 3000 r before 
the stall. Yue et al. [11] conducted experiments in a 

low-speed axial contra-rotating compressor and found a 
large-scale, low-speed pre-stall disturbance that was 
distinct from modal and spike stall inception. After 
several decades of research, scholars have gained a 
profound understanding of the stall phenomenon in 
compressors. However, the problem of how to timely 
warn and avoid the disaster before the stall occurs 
remains an urgent issue that needs to be addressed [1]. 

Extensive studies of stall processes in compressors 
have revealed that the key flow mechanisms for stall 
initiation are closely linked to unsteady flow in the rotor 
blade tip region. Moreover, stall inception in compressors 
typically occurs first in the blade tip region. Epstein et al. 
[12] first suggested that the utilization of active control 
techniques could effectively delay the onset of stall. 
According to the different types of stall inception, Day 
adopted different active control strategies based on the 
air injection at the top of the blade [13]. By monitoring 
the circumferential position of the disturbance in 
real-time during the test, the stall inception disturbances 
were successfully suppressed, and the stall margin was 
improved by 4% by injecting air at the local position. Du 
et al. [14] successfully increased the stall margin of a 
three-stage axial flow compressor by 20% via air 
injection upstream of the first-stage rotor. The rapid 
detection of stall inception is critical to the successful 
application of active control technology. During this 
process, it is critical to analyze the unsteady signal. 

In 1991, Inoue found that there was a sharp unsteady 
fluctuation in the top region of the blade near the stall, 
and the periodicity presented in the steady state vanished 

Copyright©Journal of Thermal Science



XUE Fei et al.  Comparison of Rotating Stall Warning by Different Methods for Variable Speed Configurations 1381 

 

[15]. Based on this phenomenon, Park et al. [16] used the 
cross-correlation (CC) method to analyze the pressure 
signal and detected a disturbance wave several hundred 
revolutions before stalling. Researchers widely favor this 
class of time-domain analysis methods due to their 
simplicity of calculation and their applicability for online 
stall monitoring. Furthermore, some frequency-domain 
analysis methods such as Fast Fourier Transform (FFT), 
Power Spectral Density (PSD) method, and Wavelet 
analysis are also widely used to characterize the stall 
characteristics in a compressor [17–19]. However, these 
methods are limited by the fact that they cannot reflect 
the time information of the stall disturbance. Liu et al. 
[20] compared and analyzed the stall warning 
performance of auto-correlation, cross-correlation, Root 
Mean Square (RMS), and Fast Wavelet Transform (FWT) 
methods under different operating conditions. The results 
demonstrated that the CC method was independent of the 
sensor installation location and had good stall warning 
performance in both distortion and non-distortion regions. 
The time-frequency analysis method is a signal 
processing technique that combines the advantages of the 
time-domain analysis method and the frequency-domain 
analysis method. Yue et al. [21] developed an empirical 
modal decomposition (EMD) combined with the local 
mean decomposition (LMD) method. This method 
inherits the strong robustness of EMD and the 
well-defined instantaneous frequency of LMD, so it 
provides good results in the analysis of stall data with 
strong nonlinearity. However, its universality is poor as its 
performance varies greatly under different forms of stall, 
and it mostly relies on experience in setting the threshold. 

In recent years, deep learning has attracted a lot of 
attention from scholars in various fields due to its ability 
in learning and fitting strongly nonlinear data sets. 
Recurrent Neural Network (RNN) is a type of neural 
network that can be used for forecasting time series, and 
it has been applied successfully in various fields such as 
fault diagnosis [22, 23]. Long Short-Term Memory 
(LSTM) has further improved RNN’s ability to 
remember time series over long periods. Malhorta et al. 
[24] trained an LSTM with normal time series data set to 
predict the values of multiple time steps. They then 
modeled the prediction error as a multivariate Gaussian 
distribution to obtain the probability of fault occurrence. 
Results showed that the LSTM obtained favorable results 
on four different sets of time series data for anomaly 
detection. Saniat et al. [25] used an LSTM model to learn 
from 26 400 seconds of data obtained from a simulated 
aircraft. The study demonstrated that the network model 
was able to predict aircraft stall warnings with an 
accuracy of greater than 95% and a lead time of 10 
seconds. Hipple et al. [26] compared two models of 
LSTM (classification and regression) and trained the 

network model with the speed data of the compressor. 
Results revealed that the LSTM regression model had a 
better stall warning performance and was able to give 
stall warning 5–20 ms before the stall. 

From the above literature, it is evident that deep 
learning has been widely used in nonlinear signal 
diagnosis. However, compressor stall experiments are 
usually labor-intensive, resulting in a lack of experimental 
data available for research. As a result, the application of 
deep learning technology in compressor stall warning has 
been delayed. Thus, the dynamic pressure stall time series 
collected by the high-frequency dynamic pressure sensor 
array in a low-speed axial contra-rotating compressor at 
Northwestern Polytechnic University in Xi’an, China are 
used to develop the rotating stall warning method with 
neural network. In this paper, the LSTM regression 
model is trained using the data sets collected from 
different speed configurations. Then, the best-performing 
model is used to obtain the stall warning results for three 
speed configurations. These results are compared with 
those obtained by the Standard Deviation (SD) method, 
CC method, and Discrete Wavelet Transform (DWT) 
method. Finally, the reason why the LSTM regression 
model is more effective than other methods is explained. 

2. Facilities and Measurement 

2.1 Test bench 

Fig. 1 shows the low-speed axial flow contra-rotating 
compressor test bench. The aerodynamic structure is inlet 
guide vanes (IGVs) - front rotor (R1) - rear rotor (R2), 
and the specific parameters are shown in Table 1. 

Following the direction of airflow, the front rotor 
rotates clockwise, and the rear rotor rotates anticlockwise. 
The negative sign in Table 1 represents clockwise 
rotation. For the brief discussion below, the front rotor 
speed will not include a negative sign. The front and rear 
rotors are respectively driven by two three-phase 
asynchronous motors with a rated power of 22 kW. To 
ensure the contra-rotating compressor operates smoothly 
from a steady state to stall, the rotor speed is controlled 
using proportional integral derivative (PID) technology 
to maintain the fluctuation of the shaft speed is no more 
than 0.2 r/min. By controlling the axial position of the 
throttle cone at the end of the bench, the flow area of the 
compressor outlet is changed, and thus the airflow of the 
compressor is regulated. During the steady state - stall 
process, the throttle cone moves in a pattern of 
progressively shorter distance and lower speed with each 
movement in order to ensure that the stall phenomenon 
can be captured in time. Fig. 1 shows that there are 9 
electromagnetic bleed valves arranged in  the 
circumferential direction of the transition section. These 
valves can be controlled to bleed in order to achieve a  
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Fig. 1  Overall layout of the contra-rotating compressor test bench 
 
Table 1  The specific parameters of the contra-rotating 
compressor test bench 

Parameters Value 

Number of IGVs 19 

Number of R1 blades 21 

Number of R2 blades 21 

R1 design speed/r·min–1 –2400 

R2 design speed/r·min–1 2400 

Hub ratio 0.82 

Casing diameter/mm 780 

Blade tip clearance/mm 0.5 

Flow rate at design point/kg·s–1 6.4 

Static pressure rise at design point/kPa 7.0 

 
quick exit from the dangerous working condition when 
an emergency such as a surge occurs. At the inlet (A-A 
section) and outlet (B-B section) of the compressor, four 
static pressure holes are uniformly arranged in the 
circumferential section to obtain the flow coefficient (ϕ) 
– total-to-static pressure rise coefficient (Ψts) 
characteristic curve. The calculation process of ϕ and Ψts 
is shown in Eq. (1) and Eq. (3) respectively. 

i 1mV U                 (1) 

where Vi is the compressor inlet airflow velocity, and the 
calculation formula is shown in Eq. (2). U1m is the R1 
medium radial velocity.  
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where Ai is the inlet airflow circulation area of 
compressor; ρatm is the local atmospheric density, and ε is 
the expansion coefficient. The numerator in Eq. (2) can 
be calculated to obtain the inlet airflow mass flow. 
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where Pe, ave is the average static pressure at the outlet of 
the compressor, and also the total-to-static pressure rise. 

2.2 Characteristic curves and stall disturbance 
characteristics 

Define the speed ratio as RR=n1 : n2, where n1 
represents the front rotor speed, and n2 represents the rear 
rotor speed. Taking the design speed (n1=2400 r/min, 
n2=2400 r/min) as an example, Fig. 2 shows the ϕ-Ψts 
characteristic curve. As can be seen from Fig. 2, during 
the steady-state – stall initiation – fully developed stall – 
stall recovery – steady-state process, the characteristic 
curve exhibits a typical hysteresis loop phenomenon, 
which is depicted by the black dashed box in the enlarged 
portion. 31 high-frequency response dynamic pressure 
sensors are arranged in the observation section to collect 
dynamic pressure data under varying operating 
conditions. Fig. 3(a) and 3(b) show the arrangement 
scheme of sensors along both the rotors chord and 
circumferential direction, respectively. The black cycles 
in Fig. 3(a) represent two optical fiber sensors used for 
phase locking. More detailed information about 
phase-lock system and sensor installation information 
can be found in Ref. [11]. Using these sensors can obtain 
the stall disturbance characteristics. 

 

 
 

Fig. 2  The ϕ-Ψts characteristic curve of contra-rotating 
compressor (n1=2400 r/min, n2=2400 r/min) 
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Fig. 3  The layout of the dynamic pressure sensors 
 

 
 

Fig. 4  Stall characteristics of different speed configurations 
 

By analyzing the time-dependent pressure collected 
simultaneously by sensors, the stall initiation process and 
its characteristics under different speed configurations 
can be well understood. When the stall occurs, the 
position of the throttle cone in the axial direction remains 
unchanged, while the Ψts and ϕ drop sharply at a specific 
moment. The stall occurrence process and disturbance 
characteristics of this contra-rotating compressor are 
detailed in Ref. [11], which provides an example of both 
front and rear rotor speed of 800 r/min. Previous 
numerical calculations for this compressor have obtained 
the evolution of the tip leakage vortex from steady state 
to stall [27]. This study explains the stall disturbance 
characteristics and generation mechanism. 

The stall characteristics of the contra-rotating 
compressor can be obtained under different speed 
configurations by varying the front and rear rotor speeds, 
as detailed in Fig. 4. The horizontal axis represents 
different speed configurations, and detailed information 
is shown on the right side of the figure. It can be found 
that the stall disturbances under different speed 
configurations rotate at varying propagation speeds. As 
the speed ratio increases, the propagation speed of stall 
disturbances based on rear rotor speed (ns) decreases 
gradually. The maximum stall cell rotation frequency 
does not exceed 5 Hz. Three speed configurations with 

different stall disturbance characteristics are used to test 
the generality of stall warning for each method. As 
shown by purple cycles in the figure, the stall cell 
rotation frequency of these three speed configurations 
decreases as the speed ratio increases. The pressure data 
sets of remaining 13 speed configurations are used as 
training data for LSTM in subsequent analysis. 

3. Stall Warning Results Based on Three 
Classical Approaches 

Prior to the application of the LSTM, several classical 
stall warning methods are commonly used. To illustrate 
the effectiveness of LSTM-based stall warning method 
developed in this paper, we first analyze results obtained 
by SD method, CC method and DWT method. Different 
stall warning methods are performed on the pressure data 
collected by the No. 1 sensor for these three speed 
configurations. Due to a sensor sampling frequency of 
5.12 kHz and a sampling time of 25 s, pressure data 
length is 128 000. 

3.1 Standard deviation (SD) method 

The standard deviation of a segment of data reflects 
the difference between the current data and the overall 
mean. As the pressure value exhibits significant  

Copyright©Journal of Thermal Science



1384 J. Therm. Sci., Vol.33, No.4, 2024 

 

fluctuations during a stall event, the SD method can be 
effectively employed for online monitoring of stalls. The 
formula is shown in Eq. (4). 

 2

c ave
1

1 n

i
P P

N




             (4) 

where σ is the standard deviation; N represents the 
number of samples; Pc is the current pressure value and 
Pave is the average of a segment of pressure data. 

Before analyzing the standard deviation of the original 
data collected by the sensor, these raw data are first 
filtered using the fifth-order Butterworth low-pass filter 
to remove high-frequency signals such as blade passing 
frequency (BPF). The original data collected under 
different speed configurations are all filtered with 0.33 
times front rotor BPF (BPFR1) to eliminate 
high-frequency signals while maintaining the stall and 
pre-stall disturbances information [28]. Then the filtered 
data are normalized to remove the effects of different 
pressure fluctuation ranges at different speed ratios. 
Following this, the standard deviation of the pressure 
time series is calculated for each 25 ms time interval. The 
resulting standard deviation data has a length of 1000 and 
is subsequently subjected to a smoothing process. Using 
an SD threshold of 0.07, stall disturbances can be 
effectively determined. Fig. 5 reflects the process of stall 
initiation moments obtained by using the SD method. 

The black curve is the standard deviation; the red curve is 
the result after smoothing, and the blue dashed line is the 
SD threshold and the stall initiation moment. The stall is 
detected at the 594th, 495th, and 390th revolution for the 
three speed configurations using the SD method, 
respectively. 

3.2 Cross-correlation (CC) method 

Cross-correlation can indicate the degree of signal 
similarity between a pair of sensors at the same moment 
[17]. In this study, the pressure collected by the No. 1 
sensor and the No. 20 sensor, which are symmetrical in 
the circumferential direction, are selected for 
cross-correlation analysis. Take RR=0.857 as an example, 
Fig. 6 illustrates a comparison of the pressure time 
domain signals of the two sensors for both steady state 
(ϕ=0.49) and stall condition (ϕ=0.16). The black and red 
curves respectively represent the pressure collected by 
the No. 1 sensor and No. 20 sensor. As shown in the 
figure, the wall pressure waves of both sensors exhibit a 
strong periodicity under steady-state condition while 
displaying a discernible phase difference. In the case of 
stall condition, the periodicity of the pressure waves is 
destroyed, and the coincidence is reduced. For this reason, 
it is feasible to use the CC method as a stall warning 
method. The calculation is shown in Eq. (5). 

 

 
 

Fig. 5  Stall initiation moments obtained by SD method 
 

 
 

Fig. 6  Comparison of pressure time domain signals collected by two circumferentially symmetric sensors 
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where rAB(t) is the cross-correlation value of the pressure 
signal; Ak and Bk respectively represent the pressure stall 
time series collected by the two sensors; k represents the 
discrete time; t is the relative operation time, and wnd 
represents the length of data in each sliding window. 

Before calculating the cross-correlation for different 
speed configurations, the same fifth-order Butterworth 
low-pass filter is applied. A smoothing process is then 
 

 
 

Fig. 7  Stall initiation moments obtained by CC method 

applied to further refine the cross-correlation results. 
Empirically, a cross-correlation value (r1,20, the subscript 
1,20 represents the No. 1 and No. 20 sensor) below 0.5 
indicates weak correlation between two signals. Thus, a 
r1,20 threshold value of 0.5 is selected to judge the stall 
initiation moment. Fig. 7 reflects the procedure of 
obtaining the cross-correlation with stall initiation 
moments for different speed configurations. The black 
curve is the cross-correlation; the red curve is the result 
after smoothing, and the blue dashed line is the stall 
threshold. Using the CC method for stall warning, it can 
be found that the compressor stalls at the 572nd, 509th 
and 395th revolution for three speed configurations of 
RR=0.857, RR=1.0, and RR=1.125, respectively. 

3.3 Discrete wavelet transform (DWT) method 

DWT is a multi-scale analysis of the signal by 
decomposing the original signal into high-frequency and 
low-frequency components [19]. For a practical signal of 
length N, DWT can only decompose at most log2N layers. 
The length of pressure collected by the sensor in this 
paper is 128 000 and therefore can only decompose up to 
16 layers. The sampling frequency of the sensor is 5.120 
kHz and according to the Nyquist sampling theorem, the 
highest valid information of the collected pressure does 
not exceed 2.560 kHz. Fig. 8 illustrates the frequency 
range of the approximate signal (cA) and the detail signal 
(cD) for each layer when DWT is performed on the 
pressure. Fig. 4 indicates that the stall cell rotation 
frequency gradually decreases as the speed ratio 
increases. As a result, the number of cD layers containing 
the stall disturbance information at different speed ratios 
varies but is less than 16 for all speed configurations, 
indicating that the DWT method is suitable for stall 
warning. 

 

 
 

Fig. 8  The DWT decomposition process of the pressure data 
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The original data collected by the sensor are first 
filtered using the same low-pass filter. Taking RR=0.857 
as an example, Fig. 9 shows the cD obtained by DWT 
processing of the filtered data. The blue dashed box 
represents the detail signal containing the stall 
disturbance information, and the red dotted line is the 
reference line for each layer of the detail signal. 
Assuming that pressure data obey a normal distribution 
N(μ, σ2) in steady state condition, approximately 68.3%, 
95.4% and 99.7% of the data will fall within μ±σ, μ±2σ, 
and μ±3σ, respectively.  

 

 
 

Fig. 10  Stall initiation moments obtained by DWT method 

The mathematical expectation μ and the standard 
deviation σ are calculated using the steady-state data of 
the first twenty revolutions. Therefore, this paper selects 
μ+3σ and μ–3σ as the reference lines. Fig. 10 reflects the 
process of obtaining the stall initiation moments using 
the DWT method. It can be seen that the compressor 
stalls at the 558th, 504th, and 432nd revolution for these 
three speed configurations, respectively. 

4. Stall Warning Results based on LSTM Model 

4.1 Introduction of the LSTM 

The general RNNs are constrained by the Long-Term 
Dependencies Problem (LTDP), which can result in 
gradient explosion or gradient disappearance during the 
error back-propagation process. In order to solve LTDP, 
the LSTM is developed by adding a new internal state ct 
to record historical information up to the current moment. 
Additionally, three gates are introduced to LSTM to 
enhance its memory ability, and the calculation formulas 
are shown in Eq. (6)–Eq. (8). The more detailed 
operation mechanism of this neural network is shown in 
Ref. [26], and Fig. 11 shows the structure of the LSTM. 

 f 1 f,t t tf W h x b                 (6) 

 1,t i t t ii W h x b                  (7) 

 o 1 o,t t to W h x b                  (8) 

In the above equations, σ (·) is the logistic function 
with the output range of (0, 1); ft, it, ot are forget gate, 
input gate and output gate, respectively. W and b are 
weight matrices and bias terms of these three gates. 
During the training of the LSTM, the W and b are 
continuously adjusted through the process of error 
back-propagation to simulate nonlinear systems. ht–1 is 
the external state of the hidden layer of the previous time 
step, and xt is the input parameter of the current time 
step. 

 

 
 

Fig. 11  The cell structure of the LSTM 
 

The ct can capture critical information and has ability 
to save this information for a certain time interval. Thus, 
the LSTM can deal with long-distance dependent time 
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sequences with higher efficiency than RNNs. The aim of 
this paper is to provide early warning of the stall before it 
occurs. The temporal information plays a crucial role in 
stall warning process. Based on these considerations, the 
LSTM regression model is selected to investigate 
contra-rotating compressor stall warning for different 
speed configurations. 

4.2 Dynamic pressure data pre-processing process 

Due to noise and other environmental impacts, the 
pressure collected by the sensors fluctuates significantly, 
which can lead to divergence in network models if used 
directly for training. Therefore, the original data need to 
be pre-processed before they are used to train the neural 
network models. The procedure is depicted in Fig. 12. To 
avoid overfitting of LSTM due to sample repetition, only 
the pressure collected by No. 1 sensor at the leading edge 
of the front rotor and No. 11 sensor at the leading edge of 
the rear rotor are employed for LSTM training. The 
following section illustrates the pre-processing process of 
the data gathered by No. 1 sensor when the front and rear 
rotor speeds are 1800 r/min and 2100 r/min, respectively. 

Initially, the original data are low-pass filtered with 
0.33 times BPFR1 by the previously mentioned fifth-order 
Butterworth low-pass filter. This step helps avoid signal 
distortion caused by overlapping during later resampling 
and enhances signal-to-noise ratio. Since the length of 
pressure data acquired by each sensor is 128 000, and 
large dimensionality of data for LSTM leading to 
reduced learning efficiency, a down-sampling method is 
selected to reduce pressure dimensionality. As a result, 
the length of the filtered pressure is reduced from 
128 000 to 1000, and the sampling frequency is reduced 
from 5120 Hz to 40 Hz. According to Fig. 4, the 
maximum stall cell rotation frequency is 4.28 Hz, so the 

resampled data still satisfy Nyquist sampling theorem. 
Before the resampled data are learned by network model, 
the deviation normalization method is applied to 
eliminate the impact of numerical values on the neural 
network and enable network to focus more on the 
autoregressive characteristics and overall trend of data 
itself. 

Fig. 13 reflects the effect of the original pressure data 
being pre-processed. The black and red curve represents 
original and resampled pressure, respectively. Define the 
pressure relative fluctuation amplitude ratio (PRFAR) as 
the ratio of the pressure fluctuation amplitude during the 
stall occurrence to the fluctuation amplitude before the 
stall occurrence. Combined with Eq. (9), the PRFAR of 
the resampled pressure can be obtained as 4.09, which is 
four times higher than the 1.01 of the original pressure 
data. This indicates that the stall disturbance 
characteristic is highlighted after the raw pressure has 
been preprocessed, which can improve the learning 
efficiency and stall prediction performance of the 
network. 

so,max so,min

bs,max bs,min

PRFAR
P P
P P





          (9) 

where the subscript so and bs represent the stall 
occurrence and before stall occurrence, respectively. So 
Pso,max represents the maximum pressure value during the 
stall occurrence, the meaning of the other symbols is in a 
similar way and will not be explained. 

4.3 Training data division and LSTM building 

Before training the LSTM regression model, each set 
of pre-processed data must be constructed as training 
samples for the network model learning and training. As 
shown in Fig. 14, the time window length for each  

 

 
 

Fig. 12  Original pressure pre-processing process 
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Fig. 13  The original and resampled pressure time series 
(n1=1800 r/min, n2=2100 r/min, ϕ=0.16) 

 

 
 

Fig. 14  Diagram of training sample construction 
 

training sample is set to 10 to predict pressure value at 
the next time step. The figure demonstrates this with 
training samples and their corresponding labels (same 
color), with a time interval of 1 between adjacent training 
samples. After this processing, the size of each training 
sample is 10 and corresponding label size is 1. Therefore, 
the length of 1000 resampled data is divided into 990 sets 
of training samples. 

In addition to RR=0.857 (n1=1800 r/min, n2=2100 
r/min), RR=1.0 (n1=1800 r/min, n2=1800 r/min) and 
RR=1.125 (n1=1800 r/min, n2=1600 r/min), which are 
used to test stall warning performance, the pressure 
collected at the other speed configurations in Fig. 4 are 
divided and integrated into training samples. Thus, a total 
of 25 740 sets of training samples are available. These 
samples are empirically classified into training and 
validation sets in a ratio of 7:3. The root means square 
error (RMSE) of the validation sets is used to evaluate 
network model performance and give guidance for the 
adjustment of the hyperparameters. Eq. (10) is the 
calculation formula. 

 2*
pred

1RMSE

n

i
P P

n






         (10) 

where P* is the normalized pressure; Ppred is the predicted 
pressure value of the LSTM, and n is the length of the 
predicted data. 

Fig. 15 shows the validation RMSE of the LSTM 
when adjusting its structure and hyperparameters. It can 

be inferred that the No. 6 LSTM (LSTM_net6) exhibits 
the best performance, as evidenced by the smallest 
validation RMSE of 0.0493. To further demonstrate the 
advantage of LSTM_net6 in fitting nonlinear pressure, 
prediction accuracy (PA) is calculated using Eq. (11). 

*
pred

*
PA 1 100%

P P

P

 
   
 
 

        (11) 

By applying each LSTM model to the same test set, 
the corresponding predicted pressure values and PA can 
be obtained. As shown by the red line in Fig. 15, the 
LSTM_net6 has the highest PA of 89.3%. Therefore, the 
LSTM_net6 is utilized for stall warning in subsequent 
analysis. The architecture of LSTM_net6 is as follows: it 
comprises two layers, with the first layer containing 256 
neurons and the second layer containing 32 neurons. The 
number of Epochs is 200, learning rate is 0.01, and batch 
size is 256. Since the total number of training sets is 
18 018, there will be less than 256 training samples in 
each epoch which are not learned. To guarantee that 
LSTM can effectively capture all the data features 
present in the training sets, we set “Shuffle” as “Every 
Epoch”. Additionally, the LSTM_net6 is optimized using 
the Adam optimizer, which offers fast convergence and 
ease of parameter tuning. 

 

 
 

Fig. 15  The performance of LSTM with different 
hyperparameters 

4.4 Stall warning results of LSTM 

When rotating stall occurs, a low-pressure stall 
disturbance rotates in the circumferential direction. This 
physical phenomenon causes violent pulsation 
fluctuations in the pressure signal, as can be seen in Fig. 
13. The differential method is proven to accurately 
identify pulsation signals [26]. Fig. 16 shows the 
recognition results of the differential method for the stall 
signals in this paper. The black curve is the differential 
value obtained based on the pressure data predicted by 
LSTM_net6; the red curve is the resampled data; the red 
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dashed line is the stall threshold set according to 
differential value, and the blue dashed lines are the stall 
occurrence moments. For simplicity of representation, 
only a small part of the stall occurrence moments is 
marked in Fig. 16. It can be found that the stall 
occurrence moments obtained based on the LSTM are 
consistent with the moments when pressure becomes 
violently pulsating, indicating that the LSTM can 
accurately capture the stall in time. Thus, using 
LSTM_net6 for stall warning is plausible. 

 

 
 

Fig. 16  Stall occurrence moments predicted by LSTM based 
on differential method (n1=1800 r/min, n2=2100 
r/min, ϕ=0.16) 

 
The pressure fluctuation range of different speed 

configurations varies when stall occurs, resulting in a 
changing distribution range of the differential value. In 
order to use the same stall threshold to determine the stall 
initiation moment at different speed ratios and provide an 
early warning before stall occurs, this paper uses the 
differential ratio method to obtain the stall threshold. The 
specific procedure is as follows: the maximum 
differential value of the first 20 revolutions (steady state) 
in the pressure time series is taken as the reference. As 
time passes, the differential ratio is obtained by dividing 
current differential value with the maximum differential 
value over elapsed time. 

Taking RR=0.857 (n1=1800 r/min, n2=2100 r/min) as 
an example, the subplot at the top of Fig. 17 shows the 
differential ratio obtained using the original resampled 
data. The red dashed line is the stall threshold set based 
on the differential ratio, and the blue dashed line 
represents the moment when the differential ratio value 
exceeds the stall threshold for the first time. At a stall 
threshold of 1.4, the stall initiation moment at this 
particular speed ratio is found to be the 595th revolution, 
which corresponds with the moment when the original 
pressure signals start to exhibit a violent pulsation change, 
as shown in the subplot at the bottom of Fig. 17. 

Therefore, this stall threshold of 1.4 is effective in 
identifying the occurrence of stalls. Henceforth, the 
differential ratio value of 1.4 can be used as a criterion 
for determining initiation moment of stall disturbances. 

 

 
 

Fig. 17  Stall threshold set based on the differential ratio 
(n1=1800 r/min, n2=2100 r/min, ϕ=0.16) 

 
The LSTM_net6 is used to predict pressure series for 

different speed configurations. By combining with the 
stall threshold value set based on the differential ratio, 
the pressure and corresponding stall initiation moments 
respectively obtained by the sensor and predicted by 
LSTM are compared and analyzed, as Fig. 18 shows. The 
black and red solid lines represent the resampled data and 
the pressure predicted by the LSTM, respectively. The 
black and red dashed lines respectively represent the stall 
initiation moments of the two sets of data. 

It can be seen from Fig. 18 that the stall initiation 
moments predicted by LSTM at RR=0.857 and 
RR=1.125 are at the 557th and 333rd revolution, 
respectively. This indicates a significant improvement in 
stall warning achieved by LSTM, with 44 and 74 
revolutions earlier compared to the stall initiation 
moments obtained based on resampled data. However, 
LSTM only gains a result of 2 revolutions ahead at 
RR=1.0. Upon comparing dynamic pressure stall time 
series data for these three speed configurations, small 
disturbances before the stall occurs at RR=0.857 and 
RR=1.125 can be noted. These small disturbances are not 
prominent in resampled data but are more evident in the 
pressure predicted by LSTM, as shown in the red 
rectangular box. At RR=1.0, pressure before the stall is 
relatively smoother. Based on observed phenomenon, it 
can be inferred that the LSTM is more sensitive to the 
small perturbations hidden in the pressure stall time 
series. This enables it to capture small disturbances 
before the stall occurs and thus achieve satisfactory stall 
warning results. 

Copyright©Journal of Thermal Science



XUE Fei et al.  Comparison of Rotating Stall Warning by Different Methods for Variable Speed Configurations 1391 

 

 
 

Fig. 18  Stall initiation moments obtained by LSTM 
 

5. Comparison of Stall Warning Results between 
LSTM and Classical Approaches 

In order to analyze more clearly the stall warning 
performance of the aforementioned methods for different 
speed configurations, Fig. 19 displays the stall initiation 
moments of various methods in the pressure stall time 
series. The red dashed line, blue dashed line, pink dashed 
line, green dashed line and black dashed line in the figure 
represent the stall initiation moments obtained by the 
LSTM model, DWT method, CC method, SD method 
and original data, respectively. 

It can be seen from Fig. 19 that the LSTM has a 
significant advantage over the other classical methods in 
terms of stall warning under two speed configurations of 
RR=0.857 and RR=1.125, and the corresponding stall 

initiation moments are significantly earlier. This is 
because the LSTM regression model applied in this paper 
has the autoregressive properties, which can take into 
account the change of pressure values over time and react 
to the small perturbations. Combining the pressure time 
series data in Fig. 19, it can be found that the pressure 
has a small fluctuation at a certain moment before the 
stall in both speed configurations. Moreover, the moment 
when the LSTM issues the stall warning coincides with 
the moment where the small fluctuation is located. The 
SD method and CC method only consider the statistical 
characteristics within the detection window. The change 
characteristics of the pressure at the different windows 
are not correlated. Therefore, only when there is a large 
fluctuation within the detection window, the global 
characteristics will change significantly. Then the 
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corresponding standard deviation and the 
cross-correlation coefficient exceed the corresponding 
thresholds, and stall warning will be issued. Therefore, 
the effectiveness of these two methods is poor compared 
to the LSTM. Although the DWT method has better stall 
warning performance than LSTM at RR=0.875 (n1=2100 
r/min, n2=2400 r/min), it can be found that at RR=1.125, 
the stall initiation moment obtained by the DWT method 
is one period after the stall disturbance has fully 
developed, which is unacceptable. At RR=1.0 (n1=1800 
r/min, n2=1800 r/min), the advantage of the LSTM for 
nonlinear time series signal prediction is weakened 
because the pressure time series data before stall is more 
stable. As a result, the stall warning performance of 
various methods is similar. 

 

 
 

Fig. 19  Comparison of stall warning results of different 
methods 

6. Conclusions 

This paper took a low-speed axial contra-rotating 
compressor as the test object. The characteristic curves 

and stall initiation characteristics for different speed 
configurations were obtained and analyzed. Subsequently, 
the LSTM regression model was trained using pressure 
stall time series under different speed configurations. The 
stall warning results of LSTM were then compared with 
those obtained by the SD method, CC method, and DWT 
method. Furthermore, an elucidation was provided to 
explain why the LSTM proved more effective than other 
stall warning methods. The specific conclusions are as 
follows: 

(1) As the speed ratio increased, the propagation speed 
of stall disturbances based on the rear rotor speed 
gradually decreased and the stall cell rotation frequency 
gradually reduced. 

(2) The stall initiation moments predicted by the 
LSTM at RR=0.857 and RR=1.125 were at the 557th and 
333rd revolution, respectively. These instances preceded 
the stall initiation moments obtained from resampled data 
by 44 and 74 revolutions. However, the LSTM only 
gained a stall warning of 2 revolutions ahead at RR=1.0. 
Based on the pressure time series predicted by LSTM, it 
could be inferred that the LSTM was more sensitive to 
the small perturbations hidden in the pressure stall time 
series. 

(3) In predicting stalls for RR=0.857 and RR=1.125, 
where there were small disturbances prior to the 
occurrence of stalls, the stall warning performance of 
LSTM was better than the SD method and CC method. 
Although the DWT method had a better stall warning 
performance than the LSTM at RR=0.875, the stall 
initiation moment obtained by this method was one 
period after the stall disturbance had fully developed at 
RR=1.125, which was obviously unacceptable. When 
both front and rear rotor speed were 1800 r/min, the 
pressure fluctuation before stall was relatively small. 
This made the advantage of the LSTM not exploited, and 
the stall warning performance of various methods did not 
differ greatly. 
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